hhalim commited on
Commit
b5ca808
·
1 Parent(s): dbaad09

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import streamlit as st
3
+ import pandas as pd
4
+ from pmdarima import auto_arima
5
+ import matplotlib.pyplot as plt
6
+
7
+ # Title of the Streamlit app
8
+ st.title('Auto ARIMA Time Series Analysis')
9
+
10
+ # Upload CSV data
11
+ uploaded_file = st.file_uploader("Choose a CSV file", type='csv')
12
+
13
+ if uploaded_file is not None:
14
+ # Read the uploaded CSV file with pandas
15
+ df = pd.read_csv(uploaded_file)
16
+
17
+ # Convert timestamp column to datetime format and set it as index
18
+ df['timestamp'] = pd.to_datetime(df['timestamp'])
19
+ df.set_index('timestamp', inplace=True)
20
+
21
+ # Perform Auto ARIMA analysis on value column
22
+ model = auto_arima(df['value'], trace=True, error_action='ignore', suppress_warnings=True)
23
+
24
+ # Fit the model and get predictions for next 10 periods
25
+ model.fit(df['value'])
26
+ predictions = model.predict(n_periods=10)
27
+
28
+ # Display model summary in Streamlit app
29
+ st.write(model.summary())
30
+
31
+ # Create a plot with Matplotlib and display it in Streamlit app
32
+ fig, ax = plt.subplots()
33
+
34
+ ax.plot(df.index, df['value'], label='Original')
35
+
36
+ prediction_index = pd.date_range(start=df.index[-1], periods=11)[1:]
37
+
38
+ ax.plot(prediction_index, predictions, label='Predicted')
39
+
40
+ plt.title('Value vs Timestamp')
41
+
42
+ plt.legend()
43
+
44
+ st.pyplot(fig)