Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
from pmdarima import auto_arima
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# Title of the Streamlit app
|
8 |
+
st.title('Auto ARIMA Time Series Analysis')
|
9 |
+
|
10 |
+
# Upload CSV data
|
11 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type='csv')
|
12 |
+
|
13 |
+
if uploaded_file is not None:
|
14 |
+
# Read the uploaded CSV file with pandas
|
15 |
+
df = pd.read_csv(uploaded_file)
|
16 |
+
|
17 |
+
# Convert timestamp column to datetime format and set it as index
|
18 |
+
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
19 |
+
df.set_index('timestamp', inplace=True)
|
20 |
+
|
21 |
+
# Perform Auto ARIMA analysis on value column
|
22 |
+
model = auto_arima(df['value'], trace=True, error_action='ignore', suppress_warnings=True)
|
23 |
+
|
24 |
+
# Fit the model and get predictions for next 10 periods
|
25 |
+
model.fit(df['value'])
|
26 |
+
predictions = model.predict(n_periods=10)
|
27 |
+
|
28 |
+
# Display model summary in Streamlit app
|
29 |
+
st.write(model.summary())
|
30 |
+
|
31 |
+
# Create a plot with Matplotlib and display it in Streamlit app
|
32 |
+
fig, ax = plt.subplots()
|
33 |
+
|
34 |
+
ax.plot(df.index, df['value'], label='Original')
|
35 |
+
|
36 |
+
prediction_index = pd.date_range(start=df.index[-1], periods=11)[1:]
|
37 |
+
|
38 |
+
ax.plot(prediction_index, predictions, label='Predicted')
|
39 |
+
|
40 |
+
plt.title('Value vs Timestamp')
|
41 |
+
|
42 |
+
plt.legend()
|
43 |
+
|
44 |
+
st.pyplot(fig)
|