Spaces:
Runtime error
Runtime error
File size: 4,660 Bytes
19cdc16 c3ba57d 19cdc16 cebed79 19cdc16 2391a62 19cdc16 cebed79 19cdc16 ff98ddc 19cdc16 cebed79 c3ba57d 19cdc16 d472b41 19cdc16 cebed79 c3ba57d cebed79 19cdc16 c3ba57d 19cdc16 c3ba57d 19cdc16 cebed79 19cdc16 c3ba57d 19cdc16 cebed79 c3ba57d 19cdc16 cebed79 2adf5e8 19cdc16 8c93523 cebed79 19cdc16 cebed79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from src.populate import get_model_info_df, get_merged_df
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID, token=TOKEN)
### Space initialisation
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO,
# local_dir=EVAL_REQUESTS_PATH,
# repo_type="dataset",
# tqdm_class=None,
# etag_timeout=30,
# token=TOKEN,
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO,
# local_dir=EVAL_RESULTS_PATH,
# repo_type="dataset",
# tqdm_class=None,
# etag_timeout=30,
# token=TOKEN,
# )
# except Exception:
# restart_space()
LEADERBOARD_DF = get_leaderboard_df(
EVAL_RESULTS_PATH + "/" + "BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_DOMAIN = get_leaderboard_df(
EVAL_RESULTS_PATH + "/" + "BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
model_info_df = get_model_info_df(EVAL_RESULTS_PATH)
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe, model_info_df):
# TODO: merge results df with model info df
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
merged_df = get_merged_df(dataframe, model_info_df)
merged_df = merged_df.sort_values(by=[AutoEvalColumn.Rank_6750_scaled.name], ascending=True)
# Move the model_type_symbol column to the beginning
cols = [AutoEvalColumn.model_type_symbol.name] + [
col for col in merged_df.columns if col != AutoEvalColumn.model_type_symbol.name
]
merged_df = merged_df[cols]
return Leaderboard(
value=merged_df,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
],
bool_checkboxgroup_label="Hide models",
column_widths=[40, 150] + [180 for _ in range(len(merged_df.columns) - 2)],
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Overall", elem_id="boom-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF, model_info_df)
# TODO - add other tabs if needed
# with gr.TabItem("π
By Domain - TODO", elem_id="boom-benchmark-tab-table", id=1):
# leaderboard = init_leaderboard(LEADERBOARD_DF_DOMAIN) # TODO - update table data
with gr.TabItem("π About", elem_id="boom-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|