File size: 4,660 Bytes
19cdc16
 
 
 
c3ba57d
19cdc16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cebed79
19cdc16
 
 
 
 
 
 
2391a62
19cdc16
cebed79
19cdc16
ff98ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cdc16
 
cebed79
 
 
 
 
 
c3ba57d
19cdc16
d472b41
 
 
 
 
19cdc16
cebed79
c3ba57d
cebed79
19cdc16
 
c3ba57d
 
 
 
 
 
 
 
 
19cdc16
c3ba57d
19cdc16
 
 
 
 
 
cebed79
19cdc16
 
 
 
 
c3ba57d
19cdc16
 
 
 
 
 
 
 
 
 
cebed79
c3ba57d
19cdc16
cebed79
2adf5e8
 
19cdc16
8c93523
cebed79
19cdc16
 
 
 
 
 
 
 
 
 
 
 
 
 
cebed79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from src.populate import get_model_info_df, get_merged_df

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID, token=TOKEN)


### Space initialisation
# try:
#     print(EVAL_REQUESTS_PATH)
#     snapshot_download(
#         repo_id=QUEUE_REPO,
#         local_dir=EVAL_REQUESTS_PATH,
#         repo_type="dataset",
#         tqdm_class=None,
#         etag_timeout=30,
#         token=TOKEN,
#     )
# except Exception:
#     restart_space()
# try:
#     print(EVAL_RESULTS_PATH)
#     snapshot_download(
#         repo_id=RESULTS_REPO,
#         local_dir=EVAL_RESULTS_PATH,
#         repo_type="dataset",
#         tqdm_class=None,
#         etag_timeout=30,
#         token=TOKEN,
#     )
# except Exception:
#     restart_space()


LEADERBOARD_DF = get_leaderboard_df(
    EVAL_RESULTS_PATH + "/" + "BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_DOMAIN = get_leaderboard_df(
    EVAL_RESULTS_PATH + "/" + "BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
model_info_df = get_model_info_df(EVAL_RESULTS_PATH)

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard(dataframe, model_info_df):
    # TODO: merge results df with model info df
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    merged_df = get_merged_df(dataframe, model_info_df)
    merged_df = merged_df.sort_values(by=[AutoEvalColumn.Rank_6750_scaled.name], ascending=True)

    # Move the model_type_symbol column to the beginning
    cols = [AutoEvalColumn.model_type_symbol.name] + [
        col for col in merged_df.columns if col != AutoEvalColumn.model_type_symbol.name
    ]
    merged_df = merged_df[cols]
    return Leaderboard(
        value=merged_df,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
        ],
        bool_checkboxgroup_label="Hide models",
        column_widths=[40, 150] + [180 for _ in range(len(merged_df.columns) - 2)],
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Overall", elem_id="boom-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF, model_info_df)

        # TODO - add other tabs if needed
        # with gr.TabItem("πŸ… By Domain - TODO", elem_id="boom-benchmark-tab-table", id=1):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF_DOMAIN)  # TODO - update table data

        with gr.TabItem("πŸ“ About", elem_id="boom-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()