Spaces:
Running
Running
File size: 6,233 Bytes
19cdc16 c3ba57d 19cdc16 cebed79 19cdc16 2391a62 19cdc16 cebed79 19cdc16 ff98ddc 19cdc16 cebed79 c04b086 cebed79 c04b086 e3ffac3 c04b086 cebed79 c3ba57d 19cdc16 d472b41 19cdc16 cebed79 c3ba57d 19cdc16 c3ba57d c04b086 c3ba57d c04b086 c3ba57d c04b086 19cdc16 c3ba57d c04b086 19cdc16 c04b086 19cdc16 cebed79 19cdc16 c04b086 19cdc16 cebed79 c3ba57d 19cdc16 c04b086 e3ffac3 c04b086 19cdc16 c04b086 cebed79 19cdc16 cebed79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from src.populate import get_model_info_df, get_merged_df
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID, token=TOKEN)
### Space initialisation
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO,
# local_dir=EVAL_REQUESTS_PATH,
# repo_type="dataset",
# tqdm_class=None,
# etag_timeout=30,
# token=TOKEN,
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO,
# local_dir=EVAL_RESULTS_PATH,
# repo_type="dataset",
# tqdm_class=None,
# etag_timeout=30,
# token=TOKEN,
# )
# except Exception:
# restart_space()
LEADERBOARD_DF = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_DOMAIN = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOM_domain_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_METRIC_TYPE = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOM_metric_type_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_TERM = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOM_term_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_BOOMLET = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOMLET_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
model_info_df = get_model_info_df(EVAL_RESULTS_PATH)
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe, model_info_df):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
merged_df = get_merged_df(dataframe, model_info_df)
if "Rank" in merged_df.columns:
merged_df = merged_df.sort_values(by=["Rank"], ascending=True)
else:
# Sort by the first CRPS column if the Rank column is not present
crps_cols = [col for col in merged_df.columns if "CRPS" in col]
if crps_cols:
merged_df = merged_df.sort_values(by=crps_cols[0], ascending=True)
# Move the model_type_symbol column to the beginning
cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + sorted(
[
col
for col in merged_df.columns
if col not in [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
]
)
merged_df = merged_df[cols]
col2type_dict = {c.name: c.type for c in fields(AutoEvalColumn)}
datatype_list = [col2type_dict[col] if col in col2type_dict else "number" for col in merged_df.columns]
model_info_col_list = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]
default_selection_list = list(dataframe.columns) + model_info_col_list
return Leaderboard(
value=merged_df,
datatype=datatype_list,
select_columns=SelectColumns(
default_selection=default_selection_list,
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
],
bool_checkboxgroup_label="Hide models",
column_widths=[40, 180] + [160 for _ in range(len(merged_df.columns) - 2)],
wrap=True,
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Overall", elem_id="boom-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF, model_info_df)
with gr.TabItem("π
By Domain", elem_id="boom-benchmark-tab-table", id=1):
leaderboard = init_leaderboard(LEADERBOARD_DF_DOMAIN, model_info_df)
with gr.TabItem("π
By Metric Type", elem_id="boom-benchmark-tab-table", id=2):
leaderboard = init_leaderboard(LEADERBOARD_DF_METRIC_TYPE, model_info_df)
with gr.TabItem("π
By Forecast Horizon", elem_id="boom-benchmark-tab-table", id=3):
leaderboard = init_leaderboard(LEADERBOARD_DF_TERM, model_info_df)
with gr.TabItem("π
BOOMLET", elem_id="boom-benchmark-tab-table", id=4):
leaderboard = init_leaderboard(LEADERBOARD_DF_BOOMLET, model_info_df)
with gr.TabItem("π About", elem_id="boom-benchmark-tab-table", id=5):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|