File size: 6,233 Bytes
19cdc16
 
 
 
c3ba57d
19cdc16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cebed79
19cdc16
 
 
 
 
 
 
2391a62
19cdc16
cebed79
19cdc16
ff98ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cdc16
 
cebed79
c04b086
cebed79
 
c04b086
 
e3ffac3
 
 
c04b086
 
 
 
 
cebed79
c3ba57d
19cdc16
d472b41
 
 
 
 
19cdc16
cebed79
c3ba57d
19cdc16
 
c3ba57d
 
c04b086
 
 
 
 
 
 
 
c3ba57d
 
c04b086
 
 
 
 
 
 
c3ba57d
c04b086
 
 
 
19cdc16
c3ba57d
c04b086
19cdc16
c04b086
19cdc16
 
 
cebed79
19cdc16
 
 
 
 
c04b086
 
19cdc16
 
 
 
 
 
 
 
 
 
cebed79
c3ba57d
19cdc16
c04b086
 
 
e3ffac3
 
c04b086
 
 
 
 
 
19cdc16
c04b086
cebed79
19cdc16
 
 
 
 
 
 
 
 
 
 
 
 
 
cebed79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from src.populate import get_model_info_df, get_merged_df

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID, token=TOKEN)


### Space initialisation
# try:
#     print(EVAL_REQUESTS_PATH)
#     snapshot_download(
#         repo_id=QUEUE_REPO,
#         local_dir=EVAL_REQUESTS_PATH,
#         repo_type="dataset",
#         tqdm_class=None,
#         etag_timeout=30,
#         token=TOKEN,
#     )
# except Exception:
#     restart_space()
# try:
#     print(EVAL_RESULTS_PATH)
#     snapshot_download(
#         repo_id=RESULTS_REPO,
#         local_dir=EVAL_RESULTS_PATH,
#         repo_type="dataset",
#         tqdm_class=None,
#         etag_timeout=30,
#         token=TOKEN,
#     )
# except Exception:
#     restart_space()


LEADERBOARD_DF = get_leaderboard_df(
    EVAL_RESULTS_PATH + "/leaderboards/BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_DOMAIN = get_leaderboard_df(
    EVAL_RESULTS_PATH + "/leaderboards/BOOM_domain_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_METRIC_TYPE = get_leaderboard_df(
    EVAL_RESULTS_PATH + "/leaderboards/BOOM_metric_type_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_TERM = get_leaderboard_df(
    EVAL_RESULTS_PATH + "/leaderboards/BOOM_term_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_BOOMLET = get_leaderboard_df(
    EVAL_RESULTS_PATH + "/leaderboards/BOOMLET_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
model_info_df = get_model_info_df(EVAL_RESULTS_PATH)

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard(dataframe, model_info_df):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    merged_df = get_merged_df(dataframe, model_info_df)

    if "Rank" in merged_df.columns:
        merged_df = merged_df.sort_values(by=["Rank"], ascending=True)
    else:
        # Sort by the first CRPS column if the Rank column is not present
        crps_cols = [col for col in merged_df.columns if "CRPS" in col]
        if crps_cols:
            merged_df = merged_df.sort_values(by=crps_cols[0], ascending=True)

    # Move the model_type_symbol column to the beginning
    cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + sorted(
        [
            col
            for col in merged_df.columns
            if col not in [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
        ]
    )
    merged_df = merged_df[cols]
    col2type_dict = {c.name: c.type for c in fields(AutoEvalColumn)}
    datatype_list = [col2type_dict[col] if col in col2type_dict else "number" for col in merged_df.columns]
    model_info_col_list = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]
    default_selection_list = list(dataframe.columns) + model_info_col_list
    return Leaderboard(
        value=merged_df,
        datatype=datatype_list,
        select_columns=SelectColumns(
            default_selection=default_selection_list,
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
        ],
        bool_checkboxgroup_label="Hide models",
        column_widths=[40, 180] + [160 for _ in range(len(merged_df.columns) - 2)],
        wrap=True,
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Overall", elem_id="boom-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF, model_info_df)

        with gr.TabItem("πŸ… By Domain", elem_id="boom-benchmark-tab-table", id=1):
            leaderboard = init_leaderboard(LEADERBOARD_DF_DOMAIN, model_info_df)

        with gr.TabItem("πŸ… By Metric Type", elem_id="boom-benchmark-tab-table", id=2):
            leaderboard = init_leaderboard(LEADERBOARD_DF_METRIC_TYPE, model_info_df)

        with gr.TabItem("πŸ… By Forecast Horizon", elem_id="boom-benchmark-tab-table", id=3):
            leaderboard = init_leaderboard(LEADERBOARD_DF_TERM, model_info_df)

        with gr.TabItem("πŸ… BOOMLET", elem_id="boom-benchmark-tab-table", id=4):
            leaderboard = init_leaderboard(LEADERBOARD_DF_BOOMLET, model_info_df)

        with gr.TabItem("πŸ“ About", elem_id="boom-benchmark-tab-table", id=5):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()