File size: 4,495 Bytes
19cdc16
 
 
 
 
 
 
cebed79
19cdc16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cebed79
19cdc16
 
 
55a94df
 
 
19cdc16
cebed79
55a94df
 
 
19cdc16
55a94df
cebed79
 
 
 
 
 
 
 
19cdc16
 
 
 
cebed79
19cdc16
 
 
 
 
 
 
 
 
 
cebed79
19cdc16
 
 
 
 
cebed79
19cdc16
 
 
cebed79
 
 
 
 
19cdc16
 
 
 
 
 
 
 
 
 
 
cebed79
 
 
 
19cdc16
 
cebed79
19cdc16
 
 
 
 
cebed79
19cdc16
 
 
 
 
 
 
 
 
 
 
 
cebed79
19cdc16
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False


## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(
    ["model_type_symbol", ColumnContent, ColumnContent("Type", "str", True, never_hidden=True)]
)
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# Scores
auto_eval_column_dict.append(["MASE_6750_scaled", ColumnContent, ColumnContent("MASE", "number", True)])
auto_eval_column_dict.append(["CRPS_6750_scaled", ColumnContent, ColumnContent("CRPS", "number", True)])
auto_eval_column_dict.append(["Rank_6750_scaled", ColumnContent, ColumnContent("Rank", "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Model Type", "str", False, hidden=True)])
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    PT = ModelDetails(name="🟒 pretrained", symbol="🟒")
    FT = ModelDetails(name="πŸ”Ά fine-tuned", symbol="πŸ”Ά")
    DL = ModelDetails(name="πŸ”· deep-learning", symbol="πŸ”·")
    ST = ModelDetails(name="🟣 statistical", symbol="🟣")

    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "πŸ”Ά" in type:
            return ModelType.FT
        if "pretrained" in type or "🟒" in type:
            return ModelType.PT
        if "deep-learning" in type or "🟦" in type:
            return ModelType.DL
        if "statistical" in type or "🟣" in type:
            return ModelType.ST
        return ModelType.Unknown


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")


class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]