Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.populate import get_model_info_df, get_merged_df | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision, | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID, token=TOKEN) | |
### Space initialisation | |
# try: | |
# print(EVAL_REQUESTS_PATH) | |
# snapshot_download( | |
# repo_id=QUEUE_REPO, | |
# local_dir=EVAL_REQUESTS_PATH, | |
# repo_type="dataset", | |
# tqdm_class=None, | |
# etag_timeout=30, | |
# token=TOKEN, | |
# ) | |
# except Exception: | |
# restart_space() | |
# try: | |
# print(EVAL_RESULTS_PATH) | |
# snapshot_download( | |
# repo_id=RESULTS_REPO, | |
# local_dir=EVAL_RESULTS_PATH, | |
# repo_type="dataset", | |
# tqdm_class=None, | |
# etag_timeout=30, | |
# token=TOKEN, | |
# ) | |
# except Exception: | |
# restart_space() | |
LEADERBOARD_DF = get_leaderboard_df( | |
EVAL_RESULTS_PATH + "/leaderboards/BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
) | |
LEADERBOARD_DF_DOMAIN = get_leaderboard_df( | |
EVAL_RESULTS_PATH + "/leaderboards/BOOM_domain_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
) | |
LEADERBOARD_DF_METRIC_TYPE = get_leaderboard_df( | |
EVAL_RESULTS_PATH + "/leaderboards/BOOM_metric_type_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
) | |
LEADERBOARD_DF_TERM = get_leaderboard_df( | |
EVAL_RESULTS_PATH + "/leaderboards/BOOM_term_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
) | |
LEADERBOARD_DF_BOOMLET = get_leaderboard_df( | |
EVAL_RESULTS_PATH + "/leaderboards/BOOMLET_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
) | |
model_info_df = get_model_info_df(EVAL_RESULTS_PATH) | |
# ( | |
# finished_eval_queue_df, | |
# running_eval_queue_df, | |
# pending_eval_queue_df, | |
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe, model_info_df): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
merged_df = get_merged_df(dataframe, model_info_df) | |
if "Rank" in merged_df.columns: | |
merged_df = merged_df.sort_values(by=["Rank"], ascending=True) | |
else: | |
# Sort by the first CRPS column if the Rank column is not present | |
crps_cols = [col for col in merged_df.columns if "CRPS" in col] | |
if crps_cols: | |
merged_df = merged_df.sort_values(by=crps_cols[0], ascending=True) | |
# Move the model_type_symbol column to the beginning | |
cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + sorted( | |
[ | |
col | |
for col in merged_df.columns | |
if col not in [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] | |
] | |
) | |
merged_df = merged_df[cols] | |
col2type_dict = {c.name: c.type for c in fields(AutoEvalColumn)} | |
datatype_list = [col2type_dict[col] if col in col2type_dict else "number" for col in merged_df.columns] | |
model_info_col_list = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default] | |
default_selection_list = list(dataframe.columns) + model_info_col_list | |
return Leaderboard( | |
value=merged_df, | |
datatype=datatype_list, | |
select_columns=SelectColumns( | |
default_selection=default_selection_list, | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.model.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
], | |
bool_checkboxgroup_label="Hide models", | |
column_widths=[40, 180] + [160 for _ in range(len(merged_df.columns) - 2)], | |
wrap=True, | |
interactive=False, | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Overall", elem_id="boom-benchmark-tab-table", id=0): | |
leaderboard = init_leaderboard(LEADERBOARD_DF, model_info_df) | |
with gr.TabItem("π By Domain", elem_id="boom-benchmark-tab-table", id=1): | |
leaderboard = init_leaderboard(LEADERBOARD_DF_DOMAIN, model_info_df) | |
with gr.TabItem("π By Metric Type", elem_id="boom-benchmark-tab-table", id=2): | |
leaderboard = init_leaderboard(LEADERBOARD_DF_METRIC_TYPE, model_info_df) | |
with gr.TabItem("π By Forecast Horizon", elem_id="boom-benchmark-tab-table", id=3): | |
leaderboard = init_leaderboard(LEADERBOARD_DF_TERM, model_info_df) | |
with gr.TabItem("π BOOMLET", elem_id="boom-benchmark-tab-table", id=4): | |
leaderboard = init_leaderboard(LEADERBOARD_DF_BOOMLET, model_info_df) | |
with gr.TabItem("π About", elem_id="boom-benchmark-tab-table", id=5): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |