BOOM / app.py
annamonica's picture
add results By Metric Type
e3ffac3
raw
history blame
6.23 kB
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from src.populate import get_model_info_df, get_merged_df
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID, token=TOKEN)
### Space initialisation
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO,
# local_dir=EVAL_REQUESTS_PATH,
# repo_type="dataset",
# tqdm_class=None,
# etag_timeout=30,
# token=TOKEN,
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO,
# local_dir=EVAL_RESULTS_PATH,
# repo_type="dataset",
# tqdm_class=None,
# etag_timeout=30,
# token=TOKEN,
# )
# except Exception:
# restart_space()
LEADERBOARD_DF = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_DOMAIN = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOM_domain_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_METRIC_TYPE = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOM_metric_type_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_TERM = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOM_term_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
LEADERBOARD_DF_BOOMLET = get_leaderboard_df(
EVAL_RESULTS_PATH + "/leaderboards/BOOMLET_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
)
model_info_df = get_model_info_df(EVAL_RESULTS_PATH)
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe, model_info_df):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
merged_df = get_merged_df(dataframe, model_info_df)
if "Rank" in merged_df.columns:
merged_df = merged_df.sort_values(by=["Rank"], ascending=True)
else:
# Sort by the first CRPS column if the Rank column is not present
crps_cols = [col for col in merged_df.columns if "CRPS" in col]
if crps_cols:
merged_df = merged_df.sort_values(by=crps_cols[0], ascending=True)
# Move the model_type_symbol column to the beginning
cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + sorted(
[
col
for col in merged_df.columns
if col not in [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
]
)
merged_df = merged_df[cols]
col2type_dict = {c.name: c.type for c in fields(AutoEvalColumn)}
datatype_list = [col2type_dict[col] if col in col2type_dict else "number" for col in merged_df.columns]
model_info_col_list = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]
default_selection_list = list(dataframe.columns) + model_info_col_list
return Leaderboard(
value=merged_df,
datatype=datatype_list,
select_columns=SelectColumns(
default_selection=default_selection_list,
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
],
bool_checkboxgroup_label="Hide models",
column_widths=[40, 180] + [160 for _ in range(len(merged_df.columns) - 2)],
wrap=True,
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Overall", elem_id="boom-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF, model_info_df)
with gr.TabItem("πŸ… By Domain", elem_id="boom-benchmark-tab-table", id=1):
leaderboard = init_leaderboard(LEADERBOARD_DF_DOMAIN, model_info_df)
with gr.TabItem("πŸ… By Metric Type", elem_id="boom-benchmark-tab-table", id=2):
leaderboard = init_leaderboard(LEADERBOARD_DF_METRIC_TYPE, model_info_df)
with gr.TabItem("πŸ… By Forecast Horizon", elem_id="boom-benchmark-tab-table", id=3):
leaderboard = init_leaderboard(LEADERBOARD_DF_TERM, model_info_df)
with gr.TabItem("πŸ… BOOMLET", elem_id="boom-benchmark-tab-table", id=4):
leaderboard = init_leaderboard(LEADERBOARD_DF_BOOMLET, model_info_df)
with gr.TabItem("πŸ“ About", elem_id="boom-benchmark-tab-table", id=5):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()