Spaces:
Running
Running
import json | |
import os | |
import pandas as pd | |
from dataclasses import fields | |
from src.display.formatting import has_no_nan_values, make_clickable_model | |
from src.display.utils import AutoEvalColumn, EvalQueueColumn | |
from src.leaderboard.read_evals import get_model_info | |
from src.display.utils import ModelType | |
def get_model_info_df(results_path: str) -> pd.DataFrame: | |
"""Creates a dataframe from all the individual experiment results""" | |
raw_data = get_model_info(results_path) | |
all_data_json = [v.to_dict() for v in raw_data] | |
df = pd.DataFrame.from_records(all_data_json) | |
return df | |
def get_merged_df(result_df: pd.DataFrame, model_info_df: pd.DataFrame) -> pd.DataFrame: | |
"""Merges the model info dataframe with the results dataframe""" | |
result_df = result_df.rename(columns={"Model": "tmp_name"}) | |
merged_df = pd.merge(model_info_df, result_df, on="tmp_name", how="inner") | |
assert len(merged_df) == len( | |
result_df | |
), f"missing model info for: {set(result_df['tmp_name'].unique()) - set(model_info_df['tmp_name'].unique())}" | |
merged_df = merged_df.drop(columns=["Model", "tmp_name"]) | |
merged_df = merged_df.rename(columns={"model_w_link": "Model"}) | |
return merged_df | |
# def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
# """Creates a dataframe from all the individual experiment results""" | |
# raw_data = get_raw_eval_results(results_path, requests_path) | |
# all_data_json = [v.to_dict() for v in raw_data] | |
# df = pd.DataFrame.from_records(all_data_json) | |
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
# df = df[cols].round(decimals=2) | |
# # filter out if any of the benchmarks have not been produced | |
# df = df[has_no_nan_values(df, benchmark_cols)] | |
# return df | |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
""" | |
Processes a STATIC results CSV file to generate a leaderboard DataFrame with formatted columns and sorted values. | |
Args: | |
results_path (str): The file path to the results CSV file. | |
Returns: | |
pd.DataFrame: A processed DataFrame with renamed columns, additional formatting, and sorted values. | |
Notes: | |
- The function reads a CSV file from the given `results_path`. | |
- Internal column names are mapped to display names using `AutoEvalColumn`. | |
- A new column for model type symbols is created by parsing the `model_type` column. | |
- The `model_type` column is updated to prepend the model type symbol. | |
- The DataFrame is sorted by the `Rank_scaled` column in ascending order. | |
""" | |
df = pd.read_csv(results_path) | |
# Create the mapping from internal column name to display name | |
column_mapping = {field.name: getattr(AutoEvalColumn, field.name).name for field in fields(AutoEvalColumn)} | |
# Assuming `df` is your DataFrame: | |
df.rename(columns=column_mapping, inplace=True) | |
return df | |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
"""Creates the different dataframes for the evaluation queues requestes""" | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [ | |
e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".") | |
] | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |