import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from src.populate import get_model_info_df, get_merged_df from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision, ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.submission.submit import add_new_eval def restart_space(): API.restart_space(repo_id=REPO_ID, token=TOKEN) ### Space initialisation # try: # print(EVAL_REQUESTS_PATH) # snapshot_download( # repo_id=QUEUE_REPO, # local_dir=EVAL_REQUESTS_PATH, # repo_type="dataset", # tqdm_class=None, # etag_timeout=30, # token=TOKEN, # ) # except Exception: # restart_space() # try: # print(EVAL_RESULTS_PATH) # snapshot_download( # repo_id=RESULTS_REPO, # local_dir=EVAL_RESULTS_PATH, # repo_type="dataset", # tqdm_class=None, # etag_timeout=30, # token=TOKEN, # ) # except Exception: # restart_space() LEADERBOARD_DF = get_leaderboard_df( EVAL_RESULTS_PATH + "/leaderboards/BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS ) LEADERBOARD_DF_DOMAIN = get_leaderboard_df( EVAL_RESULTS_PATH + "/leaderboards/BOOM_domain_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS ) LEADERBOARD_DF_METRIC_TYPE = get_leaderboard_df( EVAL_RESULTS_PATH + "/leaderboards/BOOM_metric_type_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS ) LEADERBOARD_DF_TERM = get_leaderboard_df( EVAL_RESULTS_PATH + "/leaderboards/BOOM_term_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS ) LEADERBOARD_DF_BOOMLET = get_leaderboard_df( EVAL_RESULTS_PATH + "/leaderboards/BOOMLET_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS ) model_info_df = get_model_info_df(EVAL_RESULTS_PATH) # ( # finished_eval_queue_df, # running_eval_queue_df, # pending_eval_queue_df, # ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) def init_leaderboard(dataframe, model_info_df): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") merged_df = get_merged_df(dataframe, model_info_df) if "Rank" in merged_df.columns: merged_df = merged_df.sort_values(by=["Rank"], ascending=True) else: # Sort by the first CRPS column if the Rank column is not present crps_cols = [col for col in merged_df.columns if "CRPS" in col] if crps_cols: merged_df = merged_df.sort_values(by=crps_cols[0], ascending=True) # Move the model_type_symbol column to the beginning cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + sorted( [ col for col in merged_df.columns if col not in [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] ] ) merged_df = merged_df[cols] col2type_dict = {c.name: c.type for c in fields(AutoEvalColumn)} datatype_list = [col2type_dict[col] if col in col2type_dict else "number" for col in merged_df.columns] model_info_col_list = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default] default_selection_list = list(dataframe.columns) + model_info_col_list return Leaderboard( value=merged_df, datatype=datatype_list, select_columns=SelectColumns( default_selection=default_selection_list, cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.model.name], hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=[ ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), ], bool_checkboxgroup_label="Hide models", column_widths=[40, 180] + [160 for _ in range(len(merged_df.columns) - 2)], wrap=True, interactive=False, ) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 Overall", elem_id="boom-benchmark-tab-table", id=0): leaderboard = init_leaderboard(LEADERBOARD_DF, model_info_df) with gr.TabItem("🏅 By Domain", elem_id="boom-benchmark-tab-table", id=1): leaderboard = init_leaderboard(LEADERBOARD_DF_DOMAIN, model_info_df) with gr.TabItem("🏅 By Metric Type", elem_id="boom-benchmark-tab-table", id=2): leaderboard = init_leaderboard(LEADERBOARD_DF_METRIC_TYPE, model_info_df) with gr.TabItem("🏅 By Forecast Horizon", elem_id="boom-benchmark-tab-table", id=3): leaderboard = init_leaderboard(LEADERBOARD_DF_TERM, model_info_df) with gr.TabItem("🏅 BOOMLET", elem_id="boom-benchmark-tab-table", id=4): leaderboard = init_leaderboard(LEADERBOARD_DF_BOOMLET, model_info_df) with gr.TabItem("📝 About", elem_id="boom-benchmark-tab-table", id=5): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()