import json import os import pandas as pd from dataclasses import fields from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results from src.display.utils import ModelType # def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: # """Creates a dataframe from all the individual experiment results""" # raw_data = get_raw_eval_results(results_path, requests_path) # all_data_json = [v.to_dict() for v in raw_data] # df = pd.DataFrame.from_records(all_data_json) # df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) # df = df[cols].round(decimals=2) # # filter out if any of the benchmarks have not been produced # df = df[has_no_nan_values(df, benchmark_cols)] # return df def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """ Processes a STATIC results CSV file to generate a leaderboard DataFrame with formatted columns and sorted values. Args: results_path (str): The file path to the results CSV file. Returns: pd.DataFrame: A processed DataFrame with renamed columns, additional formatting, and sorted values. Notes: - The function reads a CSV file from the given `results_path`. - Internal column names are mapped to display names using `AutoEvalColumn`. - A new column for model type symbols is created by parsing the `model_type` column. - The `model_type` column is updated to prepend the model type symbol. - The DataFrame is sorted by the `Rank_6750_scaled` column in ascending order. """ df = pd.read_csv(results_path) # Create the mapping from internal column name to display name column_mapping = {field.name: getattr(AutoEvalColumn, field.name).name for field in fields(AutoEvalColumn)} # Assuming `df` is your DataFrame: df.rename(columns=column_mapping, inplace=True) # Create a new column for model type symbol by parsing the model_type column df[AutoEvalColumn.model_type_symbol.name] = df[AutoEvalColumn.model_type.name].apply( lambda x: ModelType.from_str(x).value.symbol ) # Prepend the value of model_type_symbol to the value of model_type df[AutoEvalColumn.model_type.name] = ( df[AutoEvalColumn.model_type_symbol.name] + " " + df[AutoEvalColumn.model_type.name] ) # Move the model_type_symbol column to the beginning cols = [AutoEvalColumn.model_type_symbol.name] + [ col for col in df.columns if col != AutoEvalColumn.model_type_symbol.name ] df = df[cols] df = df.sort_values(by=[AutoEvalColumn.Rank_6750_scaled.name], ascending=True) return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [ e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".") ] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]