Spaces:
Sleeping
Sleeping
Commit
·
eb008d8
1
Parent(s):
c167550
make sentence splitting optional
Browse files
app.py
CHANGED
|
@@ -17,11 +17,23 @@ logging.basicConfig(filename="logs.txt", level=logging.INFO)
|
|
| 17 |
logging.getLogger().addHandler(logging.FileHandler(log_file))
|
| 18 |
|
| 19 |
|
| 20 |
-
def load_corpus(
|
|
|
|
|
|
|
| 21 |
if verbose:
|
| 22 |
gr.Info("Loading files...")
|
| 23 |
reader = SimpleDirectoryReader(input_files=files)
|
| 24 |
docs = reader.load_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
if verbose:
|
| 26 |
print(f"Loaded {len(docs)} docs")
|
| 27 |
|
|
@@ -48,12 +60,18 @@ def upload_file(
|
|
| 48 |
chunk_overlap: int = 0,
|
| 49 |
hub_id: str = None,
|
| 50 |
private: bool = False,
|
|
|
|
| 51 |
oauth_token: gr.OAuthToken = None,
|
| 52 |
):
|
| 53 |
print("loading files")
|
| 54 |
file_paths = [file.name for file in files]
|
| 55 |
print("parsing into sentences")
|
| 56 |
-
corpus = load_corpus(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
print("Creating dataset")
|
| 58 |
dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()})
|
| 59 |
message = f"Dataset created has: \n - {len(dataset)} rows"
|
|
@@ -99,7 +117,7 @@ The chunking is done using `Llama-index`'s [`SentenceSplitter`](https://docs.lla
|
|
| 99 |
|
| 100 |
### Usage:
|
| 101 |
- Login: Start by logging in to your Hugging Face account using the provided login button.
|
| 102 |
-
- Set Parameters: Customize the chunk size and overlap according to your requirements.
|
| 103 |
- Upload Files: Use the upload button to load file(s) for processing.
|
| 104 |
- Preview Dataset: View the created dataset in a dataframe format before uploading it to the Hugging Face Hub.
|
| 105 |
- Upload to Hub: Optionally, specify the Hub ID and choose whether to make the dataset private before pushing it to the Hugging Face Hub."""
|
|
@@ -118,6 +136,7 @@ with gr.Blocks() as demo:
|
|
| 118 |
)
|
| 119 |
hub_id = gr.Textbox(value=None, label="Hub ID")
|
| 120 |
with gr.Row():
|
|
|
|
| 121 |
chunk_size = gr.Number(
|
| 122 |
256,
|
| 123 |
label="Chunk size (size to split text into)",
|
|
@@ -143,7 +162,14 @@ with gr.Blocks() as demo:
|
|
| 143 |
corpus_preview_df = gr.DataFrame()
|
| 144 |
upload_button.upload(
|
| 145 |
upload_file,
|
| 146 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
outputs=[corpus_preview_df, summary],
|
| 148 |
)
|
| 149 |
demo.launch(debug=True)
|
|
|
|
| 17 |
logging.getLogger().addHandler(logging.FileHandler(log_file))
|
| 18 |
|
| 19 |
|
| 20 |
+
def load_corpus(
|
| 21 |
+
files, chunk_size=256, chunk_overlap=0, verbose=True, split_sentences=True
|
| 22 |
+
):
|
| 23 |
if verbose:
|
| 24 |
gr.Info("Loading files...")
|
| 25 |
reader = SimpleDirectoryReader(input_files=files)
|
| 26 |
docs = reader.load_data()
|
| 27 |
+
if split_sentences is False:
|
| 28 |
+
gr.Info(
|
| 29 |
+
"Skipping sentence splitting. Each file will be a single row in the dataset."
|
| 30 |
+
)
|
| 31 |
+
return {doc.id_: doc.text for doc in docs}
|
| 32 |
+
if split_sentences:
|
| 33 |
+
return split_corpus(verbose, docs, chunk_size, chunk_overlap)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def split_corpus(verbose, docs, chunk_size, chunk_overlap):
|
| 37 |
if verbose:
|
| 38 |
print(f"Loaded {len(docs)} docs")
|
| 39 |
|
|
|
|
| 60 |
chunk_overlap: int = 0,
|
| 61 |
hub_id: str = None,
|
| 62 |
private: bool = False,
|
| 63 |
+
split_sentences: bool = True,
|
| 64 |
oauth_token: gr.OAuthToken = None,
|
| 65 |
):
|
| 66 |
print("loading files")
|
| 67 |
file_paths = [file.name for file in files]
|
| 68 |
print("parsing into sentences")
|
| 69 |
+
corpus = load_corpus(
|
| 70 |
+
file_paths,
|
| 71 |
+
chunk_size=chunk_size,
|
| 72 |
+
chunk_overlap=chunk_overlap,
|
| 73 |
+
split_sentences=split_sentences,
|
| 74 |
+
)
|
| 75 |
print("Creating dataset")
|
| 76 |
dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()})
|
| 77 |
message = f"Dataset created has: \n - {len(dataset)} rows"
|
|
|
|
| 117 |
|
| 118 |
### Usage:
|
| 119 |
- Login: Start by logging in to your Hugging Face account using the provided login button.
|
| 120 |
+
- Set Parameters: Customize the chunk size and overlap according to your requirements. If you want to split the text into chunks, check the 'Split sentences' box (on by default).
|
| 121 |
- Upload Files: Use the upload button to load file(s) for processing.
|
| 122 |
- Preview Dataset: View the created dataset in a dataframe format before uploading it to the Hugging Face Hub.
|
| 123 |
- Upload to Hub: Optionally, specify the Hub ID and choose whether to make the dataset private before pushing it to the Hugging Face Hub."""
|
|
|
|
| 136 |
)
|
| 137 |
hub_id = gr.Textbox(value=None, label="Hub ID")
|
| 138 |
with gr.Row():
|
| 139 |
+
split_sentences = gr.Checkbox(True, label="Split sentences?")
|
| 140 |
chunk_size = gr.Number(
|
| 141 |
256,
|
| 142 |
label="Chunk size (size to split text into)",
|
|
|
|
| 162 |
corpus_preview_df = gr.DataFrame()
|
| 163 |
upload_button.upload(
|
| 164 |
upload_file,
|
| 165 |
+
inputs=[
|
| 166 |
+
upload_button,
|
| 167 |
+
chunk_size,
|
| 168 |
+
chunk_overlap,
|
| 169 |
+
hub_id,
|
| 170 |
+
private,
|
| 171 |
+
split_sentences,
|
| 172 |
+
],
|
| 173 |
outputs=[corpus_preview_df, summary],
|
| 174 |
)
|
| 175 |
demo.launch(debug=True)
|