File size: 3,279 Bytes
8f6b26f
 
920f1b5
 
 
8f6b26f
 
 
 
920f1b5
 
2b17a52
920f1b5
 
 
 
2b17a52
920f1b5
 
 
 
 
 
 
c81ed17
920f1b5
 
 
 
 
2b17a52
920f1b5
 
7e8a261
920f1b5
 
 
 
 
2b17a52
920f1b5
 
 
 
 
 
 
216d5f2
2b17a52
920f1b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
title: README
emoji: 🪖
colorFrom: green
colorTo: black
sdk: static
pinned: false
---

<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
	<p class="lg:col-span-3">
		Datatrooper is a Colombia based project that looks to implement state of the art technologies on local companies. <strong
			>train and deploy Hugging Face models in Amazon SageMaker</strong
		>.
	</p>
	<a
		href="https://www.instagram.com/datatrooper/"
		class="block overflow-hidden group"
	>
		<div
			class="w-full h-40 object-cover mb-2 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
		>
			<img
				alt=""
				src="https://seeklogo.com/images/I/instagram-new-2016-logo-4773FE3F99-seeklogo.com.png"
				class="w-40"
			/>
		</div>
		<div class="underline">Read announcement blog post</div>
	</a>
	<a href="https://twitter.com/Datatrooper1" class="block overflow-hidden">
		<img
			alt=""
			src="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Twitter-logo.svg/1200px-Twitter-logo.svg.png"
			class="w-full h-40 object-cover mb-2 bg-gray-300 rounded-lg"
		/>
		<div class="underline">Video Walkthrough with Philipp Schmid</div>
	</a>
	<a
		href="https://datatrooper.github.io/intro/"
		class="block overflow-hidden group"
	>
		<div
			class="w-full h-40 object-cover mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start"
		>
			<img
				alt=""
				src="aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1648131762556-60799607c59d9e1697fa232a.png"
				class="w-full h-40 object-cover mb-2 bg-gray-300 rounded-lg"
			/>
		</div>
		<div class="underline">Documentation: Hugging Face in SageMaker</div>
	</a>
	<div class="lg:col-span-3">
		<p class="mb-2">
			To train Hugging Face models in Amazon SageMaker, you can use the
			Hugging Face Deep Learning Contrainers (DLCs) and the Hugging Face
			support in the SageMaker Python SDK.
		</p>
		<p class="mb-2">
			The DLCs are fully integrated with the SageMaker distributed training
			libraries to train models more quickly using the latest generation of
			accelerated computing instances available on Amazon EC2. With the
			SageMaker Python SDK, you can start training with just a single line of
			code, enabling your teams to move from idea to production more quickly.
		</p>
		<p class="mb-2">
			To deploy Hugging Face models in Amazon SageMaker, you can use the
			Hugging Face Deep Learning Containers with the new Hugging Face
			Inference Toolkit.
		</p>
		<p class="mb-2">
			With the new Hugging Face Inference DLCs, deploy your trained models for
			inference with just one more line of code, or select any of the 10,000+
			models publicly available on the 🤗 Hub, and deploy them with Amazon
			SageMaker, to easily create production-ready endpoints that scale
			seamlessly, with built-in monitoring and enterprise-level security.
		</p>
		<p>
			More information: <a
				href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
				class="underline">AWS blog post</a
			>,
			<a
				href="https://discuss.huggingface.co/c/sagemaker/17"
				class="underline">Community Forum</a
			>
		</p>
	</div>
</div>