Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
@@ -26,7 +26,7 @@ pinned: false
|
|
26 |
class="w-40"
|
27 |
/>
|
28 |
</div>
|
29 |
-
<div class="underline">
|
30 |
</a>
|
31 |
<a href="https://twitter.com/Datatrooper1" class="block overflow-hidden">
|
32 |
<img
|
@@ -34,7 +34,7 @@ pinned: false
|
|
34 |
src="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Twitter-logo.svg/1200px-Twitter-logo.svg.png"
|
35 |
class="w-full h-30 object-cover mb-2 bg-gray-300 rounded-lg"
|
36 |
/>
|
37 |
-
<div class="underline">
|
38 |
</a>
|
39 |
<a
|
40 |
href="https://datatrooper.github.io/intro/"
|
@@ -49,33 +49,13 @@ pinned: false
|
|
49 |
class="w-full h-30 object-cover mb-2 bg-gray-300 rounded-lg"
|
50 |
/>
|
51 |
</div>
|
52 |
-
<div class="underline">
|
53 |
</a>
|
54 |
<div class="lg:col-span-3">
|
55 |
<p class="mb-2">
|
56 |
-
|
57 |
-
Hugging Face Deep Learning Contrainers (DLCs) and the Hugging Face
|
58 |
-
support in the SageMaker Python SDK.
|
59 |
-
</p>
|
60 |
-
<p class="mb-2">
|
61 |
-
The DLCs are fully integrated with the SageMaker distributed training
|
62 |
-
libraries to train models more quickly using the latest generation of
|
63 |
-
accelerated computing instances available on Amazon EC2. With the
|
64 |
-
SageMaker Python SDK, you can start training with just a single line of
|
65 |
-
code, enabling your teams to move from idea to production more quickly.
|
66 |
-
</p>
|
67 |
-
<p class="mb-2">
|
68 |
-
To deploy Hugging Face models in Amazon SageMaker, you can use the
|
69 |
-
Hugging Face Deep Learning Containers with the new Hugging Face
|
70 |
-
Inference Toolkit.
|
71 |
-
</p>
|
72 |
-
<p class="mb-2">
|
73 |
-
With the new Hugging Face Inference DLCs, deploy your trained models for
|
74 |
-
inference with just one more line of code, or select any of the 10,000+
|
75 |
-
models publicly available on the 🤗 Hub, and deploy them with Amazon
|
76 |
-
SageMaker, to easily create production-ready endpoints that scale
|
77 |
-
seamlessly, with built-in monitoring and enterprise-level security.
|
78 |
</p>
|
|
|
79 |
<p>
|
80 |
More information: <a
|
81 |
href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
|
|
|
26 |
class="w-40"
|
27 |
/>
|
28 |
</div>
|
29 |
+
<div class="underline">Instagram</div>
|
30 |
</a>
|
31 |
<a href="https://twitter.com/Datatrooper1" class="block overflow-hidden">
|
32 |
<img
|
|
|
34 |
src="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Twitter-logo.svg/1200px-Twitter-logo.svg.png"
|
35 |
class="w-full h-30 object-cover mb-2 bg-gray-300 rounded-lg"
|
36 |
/>
|
37 |
+
<div class="underline">Twitter</div>
|
38 |
</a>
|
39 |
<a
|
40 |
href="https://datatrooper.github.io/intro/"
|
|
|
49 |
class="w-full h-30 object-cover mb-2 bg-gray-300 rounded-lg"
|
50 |
/>
|
51 |
</div>
|
52 |
+
<div class="underline">Home page</div>
|
53 |
</a>
|
54 |
<div class="lg:col-span-3">
|
55 |
<p class="mb-2">
|
56 |
+
We are just two friends that love Data Science and want to create an impact using AI technologies.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
</p>
|
58 |
+
|
59 |
<p>
|
60 |
More information: <a
|
61 |
href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
|