Dabs commited on
Commit
2881330
·
1 Parent(s): a7da7db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -25
README.md CHANGED
@@ -26,7 +26,7 @@ pinned: false
26
  class="w-40"
27
  />
28
  </div>
29
- <div class="underline">Read announcement blog post</div>
30
  </a>
31
  <a href="https://twitter.com/Datatrooper1" class="block overflow-hidden">
32
  <img
@@ -34,7 +34,7 @@ pinned: false
34
  src="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Twitter-logo.svg/1200px-Twitter-logo.svg.png"
35
  class="w-full h-30 object-cover mb-2 bg-gray-300 rounded-lg"
36
  />
37
- <div class="underline">Video Walkthrough with Philipp Schmid</div>
38
  </a>
39
  <a
40
  href="https://datatrooper.github.io/intro/"
@@ -49,33 +49,13 @@ pinned: false
49
  class="w-full h-30 object-cover mb-2 bg-gray-300 rounded-lg"
50
  />
51
  </div>
52
- <div class="underline">Documentation: Hugging Face in SageMaker</div>
53
  </a>
54
  <div class="lg:col-span-3">
55
  <p class="mb-2">
56
- To train Hugging Face models in Amazon SageMaker, you can use the
57
- Hugging Face Deep Learning Contrainers (DLCs) and the Hugging Face
58
- support in the SageMaker Python SDK.
59
- </p>
60
- <p class="mb-2">
61
- The DLCs are fully integrated with the SageMaker distributed training
62
- libraries to train models more quickly using the latest generation of
63
- accelerated computing instances available on Amazon EC2. With the
64
- SageMaker Python SDK, you can start training with just a single line of
65
- code, enabling your teams to move from idea to production more quickly.
66
- </p>
67
- <p class="mb-2">
68
- To deploy Hugging Face models in Amazon SageMaker, you can use the
69
- Hugging Face Deep Learning Containers with the new Hugging Face
70
- Inference Toolkit.
71
- </p>
72
- <p class="mb-2">
73
- With the new Hugging Face Inference DLCs, deploy your trained models for
74
- inference with just one more line of code, or select any of the 10,000+
75
- models publicly available on the 🤗 Hub, and deploy them with Amazon
76
- SageMaker, to easily create production-ready endpoints that scale
77
- seamlessly, with built-in monitoring and enterprise-level security.
78
  </p>
 
79
  <p>
80
  More information: <a
81
  href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
 
26
  class="w-40"
27
  />
28
  </div>
29
+ <div class="underline">Instagram</div>
30
  </a>
31
  <a href="https://twitter.com/Datatrooper1" class="block overflow-hidden">
32
  <img
 
34
  src="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Twitter-logo.svg/1200px-Twitter-logo.svg.png"
35
  class="w-full h-30 object-cover mb-2 bg-gray-300 rounded-lg"
36
  />
37
+ <div class="underline">Twitter</div>
38
  </a>
39
  <a
40
  href="https://datatrooper.github.io/intro/"
 
49
  class="w-full h-30 object-cover mb-2 bg-gray-300 rounded-lg"
50
  />
51
  </div>
52
+ <div class="underline">Home page</div>
53
  </a>
54
  <div class="lg:col-span-3">
55
  <p class="mb-2">
56
+ We are just two friends that love Data Science and want to create an impact using AI technologies.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  </p>
58
+
59
  <p>
60
  More information: <a
61
  href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"