import models import torch import torchvision.transforms as transforms import cv2 # initialize the computation device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #intialize the model model = models.model(pretrained=False, requires_grad=False).to(device) # load the model checkpoint checkpoint = torch.load('../outputs/model.pth') # load model weights state_dict model.load_state_dict(checkpoint['model_state_dict']) model.eval() transform = transforms.Compose([ transforms.ToPILImage(), transforms.ToTensor(), ]) genres = ['Action', 'Adventure', 'Animation', 'Biography', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Family', 'Fantasy', 'History', 'Horror', 'Music', 'Musical', 'Mystery', 'N/A', 'News', 'Reality-TV', 'Romance', 'Sci-Fi', 'Short', 'Sport', 'Thriller', 'War', 'Western'] image = cv2.imread(f"../input/movie-classifier/Multi_Label_dataset/Images/tt0084058.jpg") image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = transform(image) image = torch.tensor(image, dtype=torch.float32) image = image.to(device) image = torch.unsqueeze(image, dim=0) # get the predictions by passing the image through the model outputs = model(image) outputs = torch.sigmoid(outputs) outputs = outputs.detach().cpu() out_dict = {k: v for k, v in zip(genres, outputs.tolist()[0])} print(out_dict)