Spaces:
Runtime error
Runtime error
train model and title and description
Browse files- app.py +2 -0
- train_model.ipynb +890 -0
app.py
CHANGED
@@ -45,6 +45,8 @@ iface = gr.Interface(
|
|
45 |
[7.4, 0.7, 0.0, 1.9, 0.076, 11.0, 34.0, 0.9978, 3.51, 0.56, 9.4],
|
46 |
],
|
47 |
interpretation="default",
|
|
|
|
|
48 |
)
|
49 |
|
50 |
if __name__ == "__main__":
|
|
|
45 |
[7.4, 0.7, 0.0, 1.9, 0.076, 11.0, 34.0, 0.9978, 3.51, 0.56, 9.4],
|
46 |
],
|
47 |
interpretation="default",
|
48 |
+
title="Wine quality regressor",
|
49 |
+
description="Predict wine quality based on properties"
|
50 |
)
|
51 |
|
52 |
if __name__ == "__main__":
|
train_model.ipynb
ADDED
@@ -0,0 +1,890 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"name": "train_model.ipynb",
|
7 |
+
"provenance": []
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"cells": [
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 23,
|
21 |
+
"metadata": {
|
22 |
+
"id": "kFAHrl4RTtV4"
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"import pandas as pd\n",
|
27 |
+
"from sklearn.model_selection import train_test_split\n",
|
28 |
+
"from sklearn.ensemble import RandomForestRegressor\n"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"source": [
|
34 |
+
"wine = pd.read_csv(\"winequality-red.csv\")"
|
35 |
+
],
|
36 |
+
"metadata": {
|
37 |
+
"id": "PtRnEnZqUVz3"
|
38 |
+
},
|
39 |
+
"execution_count": 24,
|
40 |
+
"outputs": []
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"source": [
|
45 |
+
"wine.describe()"
|
46 |
+
],
|
47 |
+
"metadata": {
|
48 |
+
"colab": {
|
49 |
+
"base_uri": "https://localhost:8080/",
|
50 |
+
"height": 346
|
51 |
+
},
|
52 |
+
"id": "BEyAqxlzcY7K",
|
53 |
+
"outputId": "c9a6c736-27c4-4fcf-a70c-bb9f63dbb021"
|
54 |
+
},
|
55 |
+
"execution_count": 43,
|
56 |
+
"outputs": [
|
57 |
+
{
|
58 |
+
"output_type": "execute_result",
|
59 |
+
"data": {
|
60 |
+
"text/html": [
|
61 |
+
"\n",
|
62 |
+
" <div id=\"df-0bdcf199-7a2a-4ca2-b770-b67e10da4e05\">\n",
|
63 |
+
" <div class=\"colab-df-container\">\n",
|
64 |
+
" <div>\n",
|
65 |
+
"<style scoped>\n",
|
66 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
67 |
+
" vertical-align: middle;\n",
|
68 |
+
" }\n",
|
69 |
+
"\n",
|
70 |
+
" .dataframe tbody tr th {\n",
|
71 |
+
" vertical-align: top;\n",
|
72 |
+
" }\n",
|
73 |
+
"\n",
|
74 |
+
" .dataframe thead th {\n",
|
75 |
+
" text-align: right;\n",
|
76 |
+
" }\n",
|
77 |
+
"</style>\n",
|
78 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
79 |
+
" <thead>\n",
|
80 |
+
" <tr style=\"text-align: right;\">\n",
|
81 |
+
" <th></th>\n",
|
82 |
+
" <th>fixed acidity</th>\n",
|
83 |
+
" <th>volatile acidity</th>\n",
|
84 |
+
" <th>citric acid</th>\n",
|
85 |
+
" <th>residual sugar</th>\n",
|
86 |
+
" <th>chlorides</th>\n",
|
87 |
+
" <th>free sulfur dioxide</th>\n",
|
88 |
+
" <th>total sulfur dioxide</th>\n",
|
89 |
+
" <th>density</th>\n",
|
90 |
+
" <th>pH</th>\n",
|
91 |
+
" <th>sulphates</th>\n",
|
92 |
+
" <th>alcohol</th>\n",
|
93 |
+
" <th>quality</th>\n",
|
94 |
+
" </tr>\n",
|
95 |
+
" </thead>\n",
|
96 |
+
" <tbody>\n",
|
97 |
+
" <tr>\n",
|
98 |
+
" <th>count</th>\n",
|
99 |
+
" <td>1599.000000</td>\n",
|
100 |
+
" <td>1599.000000</td>\n",
|
101 |
+
" <td>1599.000000</td>\n",
|
102 |
+
" <td>1599.000000</td>\n",
|
103 |
+
" <td>1599.000000</td>\n",
|
104 |
+
" <td>1599.000000</td>\n",
|
105 |
+
" <td>1599.000000</td>\n",
|
106 |
+
" <td>1599.000000</td>\n",
|
107 |
+
" <td>1599.000000</td>\n",
|
108 |
+
" <td>1599.000000</td>\n",
|
109 |
+
" <td>1599.000000</td>\n",
|
110 |
+
" <td>1599.000000</td>\n",
|
111 |
+
" </tr>\n",
|
112 |
+
" <tr>\n",
|
113 |
+
" <th>mean</th>\n",
|
114 |
+
" <td>8.319637</td>\n",
|
115 |
+
" <td>0.527821</td>\n",
|
116 |
+
" <td>0.270976</td>\n",
|
117 |
+
" <td>2.538806</td>\n",
|
118 |
+
" <td>0.087467</td>\n",
|
119 |
+
" <td>15.874922</td>\n",
|
120 |
+
" <td>46.467792</td>\n",
|
121 |
+
" <td>0.996747</td>\n",
|
122 |
+
" <td>3.311113</td>\n",
|
123 |
+
" <td>0.658149</td>\n",
|
124 |
+
" <td>10.422983</td>\n",
|
125 |
+
" <td>5.636023</td>\n",
|
126 |
+
" </tr>\n",
|
127 |
+
" <tr>\n",
|
128 |
+
" <th>std</th>\n",
|
129 |
+
" <td>1.741096</td>\n",
|
130 |
+
" <td>0.179060</td>\n",
|
131 |
+
" <td>0.194801</td>\n",
|
132 |
+
" <td>1.409928</td>\n",
|
133 |
+
" <td>0.047065</td>\n",
|
134 |
+
" <td>10.460157</td>\n",
|
135 |
+
" <td>32.895324</td>\n",
|
136 |
+
" <td>0.001887</td>\n",
|
137 |
+
" <td>0.154386</td>\n",
|
138 |
+
" <td>0.169507</td>\n",
|
139 |
+
" <td>1.065668</td>\n",
|
140 |
+
" <td>0.807569</td>\n",
|
141 |
+
" </tr>\n",
|
142 |
+
" <tr>\n",
|
143 |
+
" <th>min</th>\n",
|
144 |
+
" <td>4.600000</td>\n",
|
145 |
+
" <td>0.120000</td>\n",
|
146 |
+
" <td>0.000000</td>\n",
|
147 |
+
" <td>0.900000</td>\n",
|
148 |
+
" <td>0.012000</td>\n",
|
149 |
+
" <td>1.000000</td>\n",
|
150 |
+
" <td>6.000000</td>\n",
|
151 |
+
" <td>0.990070</td>\n",
|
152 |
+
" <td>2.740000</td>\n",
|
153 |
+
" <td>0.330000</td>\n",
|
154 |
+
" <td>8.400000</td>\n",
|
155 |
+
" <td>3.000000</td>\n",
|
156 |
+
" </tr>\n",
|
157 |
+
" <tr>\n",
|
158 |
+
" <th>25%</th>\n",
|
159 |
+
" <td>7.100000</td>\n",
|
160 |
+
" <td>0.390000</td>\n",
|
161 |
+
" <td>0.090000</td>\n",
|
162 |
+
" <td>1.900000</td>\n",
|
163 |
+
" <td>0.070000</td>\n",
|
164 |
+
" <td>7.000000</td>\n",
|
165 |
+
" <td>22.000000</td>\n",
|
166 |
+
" <td>0.995600</td>\n",
|
167 |
+
" <td>3.210000</td>\n",
|
168 |
+
" <td>0.550000</td>\n",
|
169 |
+
" <td>9.500000</td>\n",
|
170 |
+
" <td>5.000000</td>\n",
|
171 |
+
" </tr>\n",
|
172 |
+
" <tr>\n",
|
173 |
+
" <th>50%</th>\n",
|
174 |
+
" <td>7.900000</td>\n",
|
175 |
+
" <td>0.520000</td>\n",
|
176 |
+
" <td>0.260000</td>\n",
|
177 |
+
" <td>2.200000</td>\n",
|
178 |
+
" <td>0.079000</td>\n",
|
179 |
+
" <td>14.000000</td>\n",
|
180 |
+
" <td>38.000000</td>\n",
|
181 |
+
" <td>0.996750</td>\n",
|
182 |
+
" <td>3.310000</td>\n",
|
183 |
+
" <td>0.620000</td>\n",
|
184 |
+
" <td>10.200000</td>\n",
|
185 |
+
" <td>6.000000</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>75%</th>\n",
|
189 |
+
" <td>9.200000</td>\n",
|
190 |
+
" <td>0.640000</td>\n",
|
191 |
+
" <td>0.420000</td>\n",
|
192 |
+
" <td>2.600000</td>\n",
|
193 |
+
" <td>0.090000</td>\n",
|
194 |
+
" <td>21.000000</td>\n",
|
195 |
+
" <td>62.000000</td>\n",
|
196 |
+
" <td>0.997835</td>\n",
|
197 |
+
" <td>3.400000</td>\n",
|
198 |
+
" <td>0.730000</td>\n",
|
199 |
+
" <td>11.100000</td>\n",
|
200 |
+
" <td>6.000000</td>\n",
|
201 |
+
" </tr>\n",
|
202 |
+
" <tr>\n",
|
203 |
+
" <th>max</th>\n",
|
204 |
+
" <td>15.900000</td>\n",
|
205 |
+
" <td>1.580000</td>\n",
|
206 |
+
" <td>1.000000</td>\n",
|
207 |
+
" <td>15.500000</td>\n",
|
208 |
+
" <td>0.611000</td>\n",
|
209 |
+
" <td>72.000000</td>\n",
|
210 |
+
" <td>289.000000</td>\n",
|
211 |
+
" <td>1.003690</td>\n",
|
212 |
+
" <td>4.010000</td>\n",
|
213 |
+
" <td>2.000000</td>\n",
|
214 |
+
" <td>14.900000</td>\n",
|
215 |
+
" <td>8.000000</td>\n",
|
216 |
+
" </tr>\n",
|
217 |
+
" </tbody>\n",
|
218 |
+
"</table>\n",
|
219 |
+
"</div>\n",
|
220 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-0bdcf199-7a2a-4ca2-b770-b67e10da4e05')\"\n",
|
221 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
222 |
+
" style=\"display:none;\">\n",
|
223 |
+
" \n",
|
224 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
225 |
+
" width=\"24px\">\n",
|
226 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
227 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
228 |
+
" </svg>\n",
|
229 |
+
" </button>\n",
|
230 |
+
" \n",
|
231 |
+
" <style>\n",
|
232 |
+
" .colab-df-container {\n",
|
233 |
+
" display:flex;\n",
|
234 |
+
" flex-wrap:wrap;\n",
|
235 |
+
" gap: 12px;\n",
|
236 |
+
" }\n",
|
237 |
+
"\n",
|
238 |
+
" .colab-df-convert {\n",
|
239 |
+
" background-color: #E8F0FE;\n",
|
240 |
+
" border: none;\n",
|
241 |
+
" border-radius: 50%;\n",
|
242 |
+
" cursor: pointer;\n",
|
243 |
+
" display: none;\n",
|
244 |
+
" fill: #1967D2;\n",
|
245 |
+
" height: 32px;\n",
|
246 |
+
" padding: 0 0 0 0;\n",
|
247 |
+
" width: 32px;\n",
|
248 |
+
" }\n",
|
249 |
+
"\n",
|
250 |
+
" .colab-df-convert:hover {\n",
|
251 |
+
" background-color: #E2EBFA;\n",
|
252 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
253 |
+
" fill: #174EA6;\n",
|
254 |
+
" }\n",
|
255 |
+
"\n",
|
256 |
+
" [theme=dark] .colab-df-convert {\n",
|
257 |
+
" background-color: #3B4455;\n",
|
258 |
+
" fill: #D2E3FC;\n",
|
259 |
+
" }\n",
|
260 |
+
"\n",
|
261 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
262 |
+
" background-color: #434B5C;\n",
|
263 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
264 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
265 |
+
" fill: #FFFFFF;\n",
|
266 |
+
" }\n",
|
267 |
+
" </style>\n",
|
268 |
+
"\n",
|
269 |
+
" <script>\n",
|
270 |
+
" const buttonEl =\n",
|
271 |
+
" document.querySelector('#df-0bdcf199-7a2a-4ca2-b770-b67e10da4e05 button.colab-df-convert');\n",
|
272 |
+
" buttonEl.style.display =\n",
|
273 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
274 |
+
"\n",
|
275 |
+
" async function convertToInteractive(key) {\n",
|
276 |
+
" const element = document.querySelector('#df-0bdcf199-7a2a-4ca2-b770-b67e10da4e05');\n",
|
277 |
+
" const dataTable =\n",
|
278 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
279 |
+
" [key], {});\n",
|
280 |
+
" if (!dataTable) return;\n",
|
281 |
+
"\n",
|
282 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
283 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
284 |
+
" + ' to learn more about interactive tables.';\n",
|
285 |
+
" element.innerHTML = '';\n",
|
286 |
+
" dataTable['output_type'] = 'display_data';\n",
|
287 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
288 |
+
" const docLink = document.createElement('div');\n",
|
289 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
290 |
+
" element.appendChild(docLink);\n",
|
291 |
+
" }\n",
|
292 |
+
" </script>\n",
|
293 |
+
" </div>\n",
|
294 |
+
" </div>\n",
|
295 |
+
" "
|
296 |
+
],
|
297 |
+
"text/plain": [
|
298 |
+
" fixed acidity volatile acidity ... alcohol quality\n",
|
299 |
+
"count 1599.000000 1599.000000 ... 1599.000000 1599.000000\n",
|
300 |
+
"mean 8.319637 0.527821 ... 10.422983 5.636023\n",
|
301 |
+
"std 1.741096 0.179060 ... 1.065668 0.807569\n",
|
302 |
+
"min 4.600000 0.120000 ... 8.400000 3.000000\n",
|
303 |
+
"25% 7.100000 0.390000 ... 9.500000 5.000000\n",
|
304 |
+
"50% 7.900000 0.520000 ... 10.200000 6.000000\n",
|
305 |
+
"75% 9.200000 0.640000 ... 11.100000 6.000000\n",
|
306 |
+
"max 15.900000 1.580000 ... 14.900000 8.000000\n",
|
307 |
+
"\n",
|
308 |
+
"[8 rows x 12 columns]"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
"metadata": {},
|
312 |
+
"execution_count": 43
|
313 |
+
}
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"source": [
|
319 |
+
"wine.head()"
|
320 |
+
],
|
321 |
+
"metadata": {
|
322 |
+
"id": "xuERkgD3UZlx",
|
323 |
+
"colab": {
|
324 |
+
"base_uri": "https://localhost:8080/",
|
325 |
+
"height": 204
|
326 |
+
},
|
327 |
+
"outputId": "8376f32a-b09b-4c7a-be86-3413a770c3b5"
|
328 |
+
},
|
329 |
+
"execution_count": 25,
|
330 |
+
"outputs": [
|
331 |
+
{
|
332 |
+
"output_type": "execute_result",
|
333 |
+
"data": {
|
334 |
+
"text/html": [
|
335 |
+
"\n",
|
336 |
+
" <div id=\"df-9c66c3b7-b0e1-46aa-8330-3d03c87c9b1b\">\n",
|
337 |
+
" <div class=\"colab-df-container\">\n",
|
338 |
+
" <div>\n",
|
339 |
+
"<style scoped>\n",
|
340 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
341 |
+
" vertical-align: middle;\n",
|
342 |
+
" }\n",
|
343 |
+
"\n",
|
344 |
+
" .dataframe tbody tr th {\n",
|
345 |
+
" vertical-align: top;\n",
|
346 |
+
" }\n",
|
347 |
+
"\n",
|
348 |
+
" .dataframe thead th {\n",
|
349 |
+
" text-align: right;\n",
|
350 |
+
" }\n",
|
351 |
+
"</style>\n",
|
352 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
353 |
+
" <thead>\n",
|
354 |
+
" <tr style=\"text-align: right;\">\n",
|
355 |
+
" <th></th>\n",
|
356 |
+
" <th>fixed acidity</th>\n",
|
357 |
+
" <th>volatile acidity</th>\n",
|
358 |
+
" <th>citric acid</th>\n",
|
359 |
+
" <th>residual sugar</th>\n",
|
360 |
+
" <th>chlorides</th>\n",
|
361 |
+
" <th>free sulfur dioxide</th>\n",
|
362 |
+
" <th>total sulfur dioxide</th>\n",
|
363 |
+
" <th>density</th>\n",
|
364 |
+
" <th>pH</th>\n",
|
365 |
+
" <th>sulphates</th>\n",
|
366 |
+
" <th>alcohol</th>\n",
|
367 |
+
" <th>quality</th>\n",
|
368 |
+
" </tr>\n",
|
369 |
+
" </thead>\n",
|
370 |
+
" <tbody>\n",
|
371 |
+
" <tr>\n",
|
372 |
+
" <th>0</th>\n",
|
373 |
+
" <td>7.4</td>\n",
|
374 |
+
" <td>0.70</td>\n",
|
375 |
+
" <td>0.00</td>\n",
|
376 |
+
" <td>1.9</td>\n",
|
377 |
+
" <td>0.076</td>\n",
|
378 |
+
" <td>11.0</td>\n",
|
379 |
+
" <td>34.0</td>\n",
|
380 |
+
" <td>0.9978</td>\n",
|
381 |
+
" <td>3.51</td>\n",
|
382 |
+
" <td>0.56</td>\n",
|
383 |
+
" <td>9.4</td>\n",
|
384 |
+
" <td>5</td>\n",
|
385 |
+
" </tr>\n",
|
386 |
+
" <tr>\n",
|
387 |
+
" <th>1</th>\n",
|
388 |
+
" <td>7.8</td>\n",
|
389 |
+
" <td>0.88</td>\n",
|
390 |
+
" <td>0.00</td>\n",
|
391 |
+
" <td>2.6</td>\n",
|
392 |
+
" <td>0.098</td>\n",
|
393 |
+
" <td>25.0</td>\n",
|
394 |
+
" <td>67.0</td>\n",
|
395 |
+
" <td>0.9968</td>\n",
|
396 |
+
" <td>3.20</td>\n",
|
397 |
+
" <td>0.68</td>\n",
|
398 |
+
" <td>9.8</td>\n",
|
399 |
+
" <td>5</td>\n",
|
400 |
+
" </tr>\n",
|
401 |
+
" <tr>\n",
|
402 |
+
" <th>2</th>\n",
|
403 |
+
" <td>7.8</td>\n",
|
404 |
+
" <td>0.76</td>\n",
|
405 |
+
" <td>0.04</td>\n",
|
406 |
+
" <td>2.3</td>\n",
|
407 |
+
" <td>0.092</td>\n",
|
408 |
+
" <td>15.0</td>\n",
|
409 |
+
" <td>54.0</td>\n",
|
410 |
+
" <td>0.9970</td>\n",
|
411 |
+
" <td>3.26</td>\n",
|
412 |
+
" <td>0.65</td>\n",
|
413 |
+
" <td>9.8</td>\n",
|
414 |
+
" <td>5</td>\n",
|
415 |
+
" </tr>\n",
|
416 |
+
" <tr>\n",
|
417 |
+
" <th>3</th>\n",
|
418 |
+
" <td>11.2</td>\n",
|
419 |
+
" <td>0.28</td>\n",
|
420 |
+
" <td>0.56</td>\n",
|
421 |
+
" <td>1.9</td>\n",
|
422 |
+
" <td>0.075</td>\n",
|
423 |
+
" <td>17.0</td>\n",
|
424 |
+
" <td>60.0</td>\n",
|
425 |
+
" <td>0.9980</td>\n",
|
426 |
+
" <td>3.16</td>\n",
|
427 |
+
" <td>0.58</td>\n",
|
428 |
+
" <td>9.8</td>\n",
|
429 |
+
" <td>6</td>\n",
|
430 |
+
" </tr>\n",
|
431 |
+
" <tr>\n",
|
432 |
+
" <th>4</th>\n",
|
433 |
+
" <td>7.4</td>\n",
|
434 |
+
" <td>0.70</td>\n",
|
435 |
+
" <td>0.00</td>\n",
|
436 |
+
" <td>1.9</td>\n",
|
437 |
+
" <td>0.076</td>\n",
|
438 |
+
" <td>11.0</td>\n",
|
439 |
+
" <td>34.0</td>\n",
|
440 |
+
" <td>0.9978</td>\n",
|
441 |
+
" <td>3.51</td>\n",
|
442 |
+
" <td>0.56</td>\n",
|
443 |
+
" <td>9.4</td>\n",
|
444 |
+
" <td>5</td>\n",
|
445 |
+
" </tr>\n",
|
446 |
+
" </tbody>\n",
|
447 |
+
"</table>\n",
|
448 |
+
"</div>\n",
|
449 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-9c66c3b7-b0e1-46aa-8330-3d03c87c9b1b')\"\n",
|
450 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
451 |
+
" style=\"display:none;\">\n",
|
452 |
+
" \n",
|
453 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
454 |
+
" width=\"24px\">\n",
|
455 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
456 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
457 |
+
" </svg>\n",
|
458 |
+
" </button>\n",
|
459 |
+
" \n",
|
460 |
+
" <style>\n",
|
461 |
+
" .colab-df-container {\n",
|
462 |
+
" display:flex;\n",
|
463 |
+
" flex-wrap:wrap;\n",
|
464 |
+
" gap: 12px;\n",
|
465 |
+
" }\n",
|
466 |
+
"\n",
|
467 |
+
" .colab-df-convert {\n",
|
468 |
+
" background-color: #E8F0FE;\n",
|
469 |
+
" border: none;\n",
|
470 |
+
" border-radius: 50%;\n",
|
471 |
+
" cursor: pointer;\n",
|
472 |
+
" display: none;\n",
|
473 |
+
" fill: #1967D2;\n",
|
474 |
+
" height: 32px;\n",
|
475 |
+
" padding: 0 0 0 0;\n",
|
476 |
+
" width: 32px;\n",
|
477 |
+
" }\n",
|
478 |
+
"\n",
|
479 |
+
" .colab-df-convert:hover {\n",
|
480 |
+
" background-color: #E2EBFA;\n",
|
481 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
482 |
+
" fill: #174EA6;\n",
|
483 |
+
" }\n",
|
484 |
+
"\n",
|
485 |
+
" [theme=dark] .colab-df-convert {\n",
|
486 |
+
" background-color: #3B4455;\n",
|
487 |
+
" fill: #D2E3FC;\n",
|
488 |
+
" }\n",
|
489 |
+
"\n",
|
490 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
491 |
+
" background-color: #434B5C;\n",
|
492 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
493 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
494 |
+
" fill: #FFFFFF;\n",
|
495 |
+
" }\n",
|
496 |
+
" </style>\n",
|
497 |
+
"\n",
|
498 |
+
" <script>\n",
|
499 |
+
" const buttonEl =\n",
|
500 |
+
" document.querySelector('#df-9c66c3b7-b0e1-46aa-8330-3d03c87c9b1b button.colab-df-convert');\n",
|
501 |
+
" buttonEl.style.display =\n",
|
502 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
503 |
+
"\n",
|
504 |
+
" async function convertToInteractive(key) {\n",
|
505 |
+
" const element = document.querySelector('#df-9c66c3b7-b0e1-46aa-8330-3d03c87c9b1b');\n",
|
506 |
+
" const dataTable =\n",
|
507 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
508 |
+
" [key], {});\n",
|
509 |
+
" if (!dataTable) return;\n",
|
510 |
+
"\n",
|
511 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
512 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
513 |
+
" + ' to learn more about interactive tables.';\n",
|
514 |
+
" element.innerHTML = '';\n",
|
515 |
+
" dataTable['output_type'] = 'display_data';\n",
|
516 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
517 |
+
" const docLink = document.createElement('div');\n",
|
518 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
519 |
+
" element.appendChild(docLink);\n",
|
520 |
+
" }\n",
|
521 |
+
" </script>\n",
|
522 |
+
" </div>\n",
|
523 |
+
" </div>\n",
|
524 |
+
" "
|
525 |
+
],
|
526 |
+
"text/plain": [
|
527 |
+
" fixed acidity volatile acidity citric acid ... sulphates alcohol quality\n",
|
528 |
+
"0 7.4 0.70 0.00 ... 0.56 9.4 5\n",
|
529 |
+
"1 7.8 0.88 0.00 ... 0.68 9.8 5\n",
|
530 |
+
"2 7.8 0.76 0.04 ... 0.65 9.8 5\n",
|
531 |
+
"3 11.2 0.28 0.56 ... 0.58 9.8 6\n",
|
532 |
+
"4 7.4 0.70 0.00 ... 0.56 9.4 5\n",
|
533 |
+
"\n",
|
534 |
+
"[5 rows x 12 columns]"
|
535 |
+
]
|
536 |
+
},
|
537 |
+
"metadata": {},
|
538 |
+
"execution_count": 25
|
539 |
+
}
|
540 |
+
]
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"cell_type": "code",
|
544 |
+
"source": [
|
545 |
+
"X = wine.drop('quality', axis = 1)\n",
|
546 |
+
"y = wine['quality']"
|
547 |
+
],
|
548 |
+
"metadata": {
|
549 |
+
"id": "G2XlFDL1UuGU"
|
550 |
+
},
|
551 |
+
"execution_count": 26,
|
552 |
+
"outputs": []
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"cell_type": "code",
|
556 |
+
"source": [
|
557 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)"
|
558 |
+
],
|
559 |
+
"metadata": {
|
560 |
+
"id": "fwQiTgseUZ8t"
|
561 |
+
},
|
562 |
+
"execution_count": 27,
|
563 |
+
"outputs": []
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"cell_type": "code",
|
567 |
+
"source": [
|
568 |
+
"rfc = RandomForestRegressor(n_estimators=200)\n",
|
569 |
+
"rfc.fit(X_train, y_train)\n",
|
570 |
+
"rfc.score(X_test, y_test)"
|
571 |
+
],
|
572 |
+
"metadata": {
|
573 |
+
"colab": {
|
574 |
+
"base_uri": "https://localhost:8080/"
|
575 |
+
},
|
576 |
+
"id": "gfaWbU0XU8qx",
|
577 |
+
"outputId": "c1360af2-235a-441b-89dc-ed8a1a3cd652"
|
578 |
+
},
|
579 |
+
"execution_count": 28,
|
580 |
+
"outputs": [
|
581 |
+
{
|
582 |
+
"output_type": "execute_result",
|
583 |
+
"data": {
|
584 |
+
"text/plain": [
|
585 |
+
"0.452940101720804"
|
586 |
+
]
|
587 |
+
},
|
588 |
+
"metadata": {},
|
589 |
+
"execution_count": 28
|
590 |
+
}
|
591 |
+
]
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"cell_type": "code",
|
595 |
+
"source": [
|
596 |
+
"preds = rfc.predict(X_test)"
|
597 |
+
],
|
598 |
+
"metadata": {
|
599 |
+
"id": "RS8QjOk6W3eW"
|
600 |
+
},
|
601 |
+
"execution_count": 31,
|
602 |
+
"outputs": []
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"cell_type": "code",
|
606 |
+
"source": [
|
607 |
+
"df.iloc[0,:]"
|
608 |
+
],
|
609 |
+
"metadata": {
|
610 |
+
"colab": {
|
611 |
+
"base_uri": "https://localhost:8080/"
|
612 |
+
},
|
613 |
+
"id": "p6A3L6kcYLg4",
|
614 |
+
"outputId": "27042b35-0070-4a8f-dc21-10e30ea4f03a"
|
615 |
+
},
|
616 |
+
"execution_count": 34,
|
617 |
+
"outputs": [
|
618 |
+
{
|
619 |
+
"output_type": "execute_result",
|
620 |
+
"data": {
|
621 |
+
"text/plain": [
|
622 |
+
"fixed acidity 7.4000\n",
|
623 |
+
"volatile acidity 0.7000\n",
|
624 |
+
"citric acid 0.0000\n",
|
625 |
+
"residual sugar 1.9000\n",
|
626 |
+
"chlorides 0.0760\n",
|
627 |
+
"free sulfur dioxide 11.0000\n",
|
628 |
+
"total sulfur dioxide 34.0000\n",
|
629 |
+
"density 0.9978\n",
|
630 |
+
"pH 3.5100\n",
|
631 |
+
"sulphates 0.5600\n",
|
632 |
+
"alcohol 9.4000\n",
|
633 |
+
"quality 5.0000\n",
|
634 |
+
"Name: 0, dtype: float64"
|
635 |
+
]
|
636 |
+
},
|
637 |
+
"metadata": {},
|
638 |
+
"execution_count": 34
|
639 |
+
}
|
640 |
+
]
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"cell_type": "code",
|
644 |
+
"source": [
|
645 |
+
"df_pred = pd.DataFrame.from_dict({\n",
|
646 |
+
" 'fixed acidity': 7.4, \n",
|
647 |
+
" 'volatile acidity': 0.7, \n",
|
648 |
+
" 'citric acid': 0, \n",
|
649 |
+
" 'residual sugar': 1.9,\n",
|
650 |
+
" 'chlorides': 0.076, \n",
|
651 |
+
" 'free sulfur dioxide': 11, \n",
|
652 |
+
" 'total sulfur dioxide': 34, \n",
|
653 |
+
" 'density':0.9978,\n",
|
654 |
+
" 'pH': 3.51, \n",
|
655 |
+
" 'sulphates': 0.56, \n",
|
656 |
+
" 'alcohol':9.4\n",
|
657 |
+
"}, orient='index').T"
|
658 |
+
],
|
659 |
+
"metadata": {
|
660 |
+
"id": "YYRmAoyJYGKR"
|
661 |
+
},
|
662 |
+
"execution_count": 40,
|
663 |
+
"outputs": []
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"cell_type": "code",
|
667 |
+
"source": [
|
668 |
+
"df_pred"
|
669 |
+
],
|
670 |
+
"metadata": {
|
671 |
+
"colab": {
|
672 |
+
"base_uri": "https://localhost:8080/",
|
673 |
+
"height": 80
|
674 |
+
},
|
675 |
+
"id": "fFCqmU6SY_S5",
|
676 |
+
"outputId": "4606cb07-1eb0-4b4e-8e7b-03eb505481fc"
|
677 |
+
},
|
678 |
+
"execution_count": 41,
|
679 |
+
"outputs": [
|
680 |
+
{
|
681 |
+
"output_type": "execute_result",
|
682 |
+
"data": {
|
683 |
+
"text/html": [
|
684 |
+
"\n",
|
685 |
+
" <div id=\"df-8ac8e971-1853-44d2-995f-b7f382067827\">\n",
|
686 |
+
" <div class=\"colab-df-container\">\n",
|
687 |
+
" <div>\n",
|
688 |
+
"<style scoped>\n",
|
689 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
690 |
+
" vertical-align: middle;\n",
|
691 |
+
" }\n",
|
692 |
+
"\n",
|
693 |
+
" .dataframe tbody tr th {\n",
|
694 |
+
" vertical-align: top;\n",
|
695 |
+
" }\n",
|
696 |
+
"\n",
|
697 |
+
" .dataframe thead th {\n",
|
698 |
+
" text-align: right;\n",
|
699 |
+
" }\n",
|
700 |
+
"</style>\n",
|
701 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
702 |
+
" <thead>\n",
|
703 |
+
" <tr style=\"text-align: right;\">\n",
|
704 |
+
" <th></th>\n",
|
705 |
+
" <th>fixed acidity</th>\n",
|
706 |
+
" <th>volatile acidity</th>\n",
|
707 |
+
" <th>citric acid</th>\n",
|
708 |
+
" <th>residual sugar</th>\n",
|
709 |
+
" <th>chlorides</th>\n",
|
710 |
+
" <th>free sulfur dioxide</th>\n",
|
711 |
+
" <th>total sulfur dioxide</th>\n",
|
712 |
+
" <th>density</th>\n",
|
713 |
+
" <th>pH</th>\n",
|
714 |
+
" <th>sulphates</th>\n",
|
715 |
+
" <th>alcohol</th>\n",
|
716 |
+
" </tr>\n",
|
717 |
+
" </thead>\n",
|
718 |
+
" <tbody>\n",
|
719 |
+
" <tr>\n",
|
720 |
+
" <th>0</th>\n",
|
721 |
+
" <td>7.4</td>\n",
|
722 |
+
" <td>0.7</td>\n",
|
723 |
+
" <td>0.0</td>\n",
|
724 |
+
" <td>1.9</td>\n",
|
725 |
+
" <td>0.076</td>\n",
|
726 |
+
" <td>11.0</td>\n",
|
727 |
+
" <td>34.0</td>\n",
|
728 |
+
" <td>0.9978</td>\n",
|
729 |
+
" <td>3.51</td>\n",
|
730 |
+
" <td>0.56</td>\n",
|
731 |
+
" <td>9.4</td>\n",
|
732 |
+
" </tr>\n",
|
733 |
+
" </tbody>\n",
|
734 |
+
"</table>\n",
|
735 |
+
"</div>\n",
|
736 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-8ac8e971-1853-44d2-995f-b7f382067827')\"\n",
|
737 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
738 |
+
" style=\"display:none;\">\n",
|
739 |
+
" \n",
|
740 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
741 |
+
" width=\"24px\">\n",
|
742 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
743 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
744 |
+
" </svg>\n",
|
745 |
+
" </button>\n",
|
746 |
+
" \n",
|
747 |
+
" <style>\n",
|
748 |
+
" .colab-df-container {\n",
|
749 |
+
" display:flex;\n",
|
750 |
+
" flex-wrap:wrap;\n",
|
751 |
+
" gap: 12px;\n",
|
752 |
+
" }\n",
|
753 |
+
"\n",
|
754 |
+
" .colab-df-convert {\n",
|
755 |
+
" background-color: #E8F0FE;\n",
|
756 |
+
" border: none;\n",
|
757 |
+
" border-radius: 50%;\n",
|
758 |
+
" cursor: pointer;\n",
|
759 |
+
" display: none;\n",
|
760 |
+
" fill: #1967D2;\n",
|
761 |
+
" height: 32px;\n",
|
762 |
+
" padding: 0 0 0 0;\n",
|
763 |
+
" width: 32px;\n",
|
764 |
+
" }\n",
|
765 |
+
"\n",
|
766 |
+
" .colab-df-convert:hover {\n",
|
767 |
+
" background-color: #E2EBFA;\n",
|
768 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
769 |
+
" fill: #174EA6;\n",
|
770 |
+
" }\n",
|
771 |
+
"\n",
|
772 |
+
" [theme=dark] .colab-df-convert {\n",
|
773 |
+
" background-color: #3B4455;\n",
|
774 |
+
" fill: #D2E3FC;\n",
|
775 |
+
" }\n",
|
776 |
+
"\n",
|
777 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
778 |
+
" background-color: #434B5C;\n",
|
779 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
780 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
781 |
+
" fill: #FFFFFF;\n",
|
782 |
+
" }\n",
|
783 |
+
" </style>\n",
|
784 |
+
"\n",
|
785 |
+
" <script>\n",
|
786 |
+
" const buttonEl =\n",
|
787 |
+
" document.querySelector('#df-8ac8e971-1853-44d2-995f-b7f382067827 button.colab-df-convert');\n",
|
788 |
+
" buttonEl.style.display =\n",
|
789 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
790 |
+
"\n",
|
791 |
+
" async function convertToInteractive(key) {\n",
|
792 |
+
" const element = document.querySelector('#df-8ac8e971-1853-44d2-995f-b7f382067827');\n",
|
793 |
+
" const dataTable =\n",
|
794 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
795 |
+
" [key], {});\n",
|
796 |
+
" if (!dataTable) return;\n",
|
797 |
+
"\n",
|
798 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
799 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
800 |
+
" + ' to learn more about interactive tables.';\n",
|
801 |
+
" element.innerHTML = '';\n",
|
802 |
+
" dataTable['output_type'] = 'display_data';\n",
|
803 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
804 |
+
" const docLink = document.createElement('div');\n",
|
805 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
806 |
+
" element.appendChild(docLink);\n",
|
807 |
+
" }\n",
|
808 |
+
" </script>\n",
|
809 |
+
" </div>\n",
|
810 |
+
" </div>\n",
|
811 |
+
" "
|
812 |
+
],
|
813 |
+
"text/plain": [
|
814 |
+
" fixed acidity volatile acidity citric acid ... pH sulphates alcohol\n",
|
815 |
+
"0 7.4 0.7 0.0 ... 3.51 0.56 9.4\n",
|
816 |
+
"\n",
|
817 |
+
"[1 rows x 11 columns]"
|
818 |
+
]
|
819 |
+
},
|
820 |
+
"metadata": {},
|
821 |
+
"execution_count": 41
|
822 |
+
}
|
823 |
+
]
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"cell_type": "code",
|
827 |
+
"source": [
|
828 |
+
"rfc.predict(df_pred)"
|
829 |
+
],
|
830 |
+
"metadata": {
|
831 |
+
"colab": {
|
832 |
+
"base_uri": "https://localhost:8080/"
|
833 |
+
},
|
834 |
+
"id": "TbLBRotEYBOf",
|
835 |
+
"outputId": "6ac50cb8-147b-4c96-bc39-2261b736973e"
|
836 |
+
},
|
837 |
+
"execution_count": 42,
|
838 |
+
"outputs": [
|
839 |
+
{
|
840 |
+
"output_type": "execute_result",
|
841 |
+
"data": {
|
842 |
+
"text/plain": [
|
843 |
+
"array([5.025])"
|
844 |
+
]
|
845 |
+
},
|
846 |
+
"metadata": {},
|
847 |
+
"execution_count": 42
|
848 |
+
}
|
849 |
+
]
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"cell_type": "code",
|
853 |
+
"source": [
|
854 |
+
"from joblib import dump, load\n",
|
855 |
+
"dump(rfc, 'wine_pred.joblib') "
|
856 |
+
],
|
857 |
+
"metadata": {
|
858 |
+
"colab": {
|
859 |
+
"base_uri": "https://localhost:8080/"
|
860 |
+
},
|
861 |
+
"id": "Wh5wXQqbWHNK",
|
862 |
+
"outputId": "84d59d4f-811b-4e1d-d182-267bbde56414"
|
863 |
+
},
|
864 |
+
"execution_count": 32,
|
865 |
+
"outputs": [
|
866 |
+
{
|
867 |
+
"output_type": "execute_result",
|
868 |
+
"data": {
|
869 |
+
"text/plain": [
|
870 |
+
"['wine_pred.joblib']"
|
871 |
+
]
|
872 |
+
},
|
873 |
+
"metadata": {},
|
874 |
+
"execution_count": 32
|
875 |
+
}
|
876 |
+
]
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"cell_type": "code",
|
880 |
+
"source": [
|
881 |
+
""
|
882 |
+
],
|
883 |
+
"metadata": {
|
884 |
+
"id": "BkfTMO4AXi4o"
|
885 |
+
},
|
886 |
+
"execution_count": null,
|
887 |
+
"outputs": []
|
888 |
+
}
|
889 |
+
]
|
890 |
+
}
|