Spaces:
Sleeping
Sleeping
File size: 921 Bytes
0f97416 3f1920d 0f97416 107ea52 3f1920d 8e632d2 3f1920d 8e632d2 4df4eb4 051f891 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import streamlit as st
from transformers import pipeline
print ("Load hv model...")
# Load the pre-trained emotion classification pipeline
model_name = "bhadresh-savani/distilbert-base-uncased-emotion"
emotion_classifier = pipeline("text-classification", model=model_name)
# Title and Description
st.title("Emotion Classifier")
st.write("""write down how your day went or what your mood is.
On this space used model "bhadresh-savani/distilbert-base-uncased-emotion"
""")
# Input text box
input_text = st.text_area("Enter text to analyze emotions:", "")
if st.button("Classify Emotion"):
if input_text.strip() == "":
st.write("Please enter some text to classify.")
else:
# Get classification results
results = emotion_classifier(input_text)
st.subheader("Predicted Emotions:")
for result in results:
st.write(f"**{result['label']}**: {result['score']:.4f}") |