Add City to DataBase
Browse files
physical_db/physical_database.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
process_kpi/process_wcel_capacity.py
CHANGED
@@ -291,7 +291,7 @@ def wcel_kpi_analysis(
|
|
291 |
physical_db = physical_db.drop_duplicates(subset="code")
|
292 |
|
293 |
# keep only code and longitude and latitude
|
294 |
-
physical_db = physical_db[["code", "Longitude", "Latitude"]]
|
295 |
|
296 |
physical_db["code"] = (
|
297 |
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
|
|
291 |
physical_db = physical_db.drop_duplicates(subset="code")
|
292 |
|
293 |
# keep only code and longitude and latitude
|
294 |
+
physical_db = physical_db[["code", "Longitude", "Latitude", "City"]]
|
295 |
|
296 |
physical_db["code"] = (
|
297 |
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
queries/process_site_db.py
CHANGED
@@ -11,6 +11,7 @@ GSM_COLUMNS = [
|
|
11 |
"Longitude",
|
12 |
"Latitude",
|
13 |
"Hauteur",
|
|
|
14 |
]
|
15 |
|
16 |
WCDMA_COLUMNS = [
|
@@ -21,6 +22,7 @@ WCDMA_COLUMNS = [
|
|
21 |
"Longitude",
|
22 |
"Latitude",
|
23 |
"Hauteur",
|
|
|
24 |
]
|
25 |
LTE_COLUMNS = [
|
26 |
"code",
|
@@ -30,6 +32,7 @@ LTE_COLUMNS = [
|
|
30 |
"Longitude",
|
31 |
"Latitude",
|
32 |
"Hauteur",
|
|
|
33 |
]
|
34 |
|
35 |
CODE_COLUMNS = [
|
@@ -38,6 +41,7 @@ CODE_COLUMNS = [
|
|
38 |
"Longitude",
|
39 |
"Latitude",
|
40 |
"Hauteur",
|
|
|
41 |
]
|
42 |
|
43 |
|
@@ -150,6 +154,7 @@ def site_db():
|
|
150 |
"Longitude",
|
151 |
"Latitude",
|
152 |
"Hauteur",
|
|
|
153 |
]
|
154 |
]
|
155 |
|
|
|
11 |
"Longitude",
|
12 |
"Latitude",
|
13 |
"Hauteur",
|
14 |
+
"City",
|
15 |
]
|
16 |
|
17 |
WCDMA_COLUMNS = [
|
|
|
22 |
"Longitude",
|
23 |
"Latitude",
|
24 |
"Hauteur",
|
25 |
+
"City",
|
26 |
]
|
27 |
LTE_COLUMNS = [
|
28 |
"code",
|
|
|
32 |
"Longitude",
|
33 |
"Latitude",
|
34 |
"Hauteur",
|
35 |
+
"City",
|
36 |
]
|
37 |
|
38 |
CODE_COLUMNS = [
|
|
|
41 |
"Longitude",
|
42 |
"Latitude",
|
43 |
"Hauteur",
|
44 |
+
"City",
|
45 |
]
|
46 |
|
47 |
|
|
|
154 |
"Longitude",
|
155 |
"Latitude",
|
156 |
"Hauteur",
|
157 |
+
"City",
|
158 |
]
|
159 |
]
|
160 |
|
utils/convert_to_excel.py
CHANGED
@@ -139,6 +139,7 @@ def get_format_map_by_format_type(formats: dict, format_type: str) -> dict:
|
|
139 |
"Longitude": formats["green"],
|
140 |
"Latitude": formats["green"],
|
141 |
"Hauteur": formats["green"],
|
|
|
142 |
"number_trx_per_cell": formats["blue_light"],
|
143 |
"number_trx_per_bcf": formats["blue_light"],
|
144 |
"number_trx_per_site": formats["blue_light"],
|
|
|
139 |
"Longitude": formats["green"],
|
140 |
"Latitude": formats["green"],
|
141 |
"Hauteur": formats["green"],
|
142 |
+
"City": formats["green"],
|
143 |
"number_trx_per_cell": formats["blue_light"],
|
144 |
"number_trx_per_bcf": formats["blue_light"],
|
145 |
"number_trx_per_site": formats["blue_light"],
|
utils/utils_vars.py
CHANGED
@@ -15,7 +15,9 @@ def get_physical_db():
|
|
15 |
pd.DataFrame: A DataFrame containing the filtered columns.
|
16 |
"""
|
17 |
physical = pd.read_csv(url)
|
18 |
-
physical = physical[
|
|
|
|
|
19 |
return physical
|
20 |
|
21 |
|
|
|
15 |
pd.DataFrame: A DataFrame containing the filtered columns.
|
16 |
"""
|
17 |
physical = pd.read_csv(url)
|
18 |
+
physical = physical[
|
19 |
+
["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur", "City"]
|
20 |
+
]
|
21 |
return physical
|
22 |
|
23 |
|