remove physical DB utilsVars
Browse files- queries/process_gsm.py +2 -2
- queries/process_lte.py +8 -5
- queries/process_wcdma.py +2 -2
- utils/utils_vars.py +1 -14
queries/process_gsm.py
CHANGED
@@ -4,7 +4,7 @@ from queries.process_mal import process_mal_data, process_mal_with_bts_name
|
|
4 |
from queries.process_trx import process_trx_data, process_trx_with_bts_name
|
5 |
from utils.config_band import config_band
|
6 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
7 |
-
from utils.utils_vars import GsmAnalysisData, UtilsVars
|
8 |
|
9 |
BTS_COLUMNS = [
|
10 |
"ID_BCF",
|
@@ -148,7 +148,7 @@ def process_gsm_data(file_path: str):
|
|
148 |
lambda row: compare_trx_tch_versus_mal(row["TRX_TCH"], row["MAL_TCH"]), axis=1
|
149 |
)
|
150 |
|
151 |
-
df_physical_db =
|
152 |
df_2g = pd.merge(df_2g, df_physical_db, on="Code_Sector", how="left")
|
153 |
|
154 |
# Save dataframes
|
|
|
4 |
from queries.process_trx import process_trx_data, process_trx_with_bts_name
|
5 |
from utils.config_band import config_band
|
6 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
7 |
+
from utils.utils_vars import GsmAnalysisData, UtilsVars, get_physical_db
|
8 |
|
9 |
BTS_COLUMNS = [
|
10 |
"ID_BCF",
|
|
|
148 |
lambda row: compare_trx_tch_versus_mal(row["TRX_TCH"], row["MAL_TCH"]), axis=1
|
149 |
)
|
150 |
|
151 |
+
df_physical_db = get_physical_db()
|
152 |
df_2g = pd.merge(df_2g, df_physical_db, on="Code_Sector", how="left")
|
153 |
|
154 |
# Save dataframes
|
queries/process_lte.py
CHANGED
@@ -3,7 +3,13 @@ import pandas as pd
|
|
3 |
|
4 |
from utils.config_band import config_band
|
5 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
6 |
-
from utils.utils_vars import
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
LNCEL_COLUMNS = [
|
9 |
"ID_LNBTS",
|
@@ -169,10 +175,7 @@ def process_lte_data(file_path: str):
|
|
169 |
df_lncel_lnbts = pd.merge(df_lncel, df_lnbts, on="ID_LNBTS", how="left")
|
170 |
df_lncel_lnbts = pd.merge(df_lncel_lnbts, df_band, on="code", how="left")
|
171 |
|
172 |
-
df_physical_db =
|
173 |
-
df_physical_db = df_physical_db[
|
174 |
-
["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur"]
|
175 |
-
]
|
176 |
df_lncel_lnbts = pd.merge(
|
177 |
df_lncel_lnbts, df_physical_db, on="Code_Sector", how="left"
|
178 |
)
|
|
|
3 |
|
4 |
from utils.config_band import config_band
|
5 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
6 |
+
from utils.utils_vars import (
|
7 |
+
LteFddAnalysisData,
|
8 |
+
LteTddAnalysisData,
|
9 |
+
UtilsVars,
|
10 |
+
get_band,
|
11 |
+
get_physical_db,
|
12 |
+
)
|
13 |
|
14 |
LNCEL_COLUMNS = [
|
15 |
"ID_LNBTS",
|
|
|
175 |
df_lncel_lnbts = pd.merge(df_lncel, df_lnbts, on="ID_LNBTS", how="left")
|
176 |
df_lncel_lnbts = pd.merge(df_lncel_lnbts, df_band, on="code", how="left")
|
177 |
|
178 |
+
df_physical_db = get_physical_db()
|
|
|
|
|
|
|
179 |
df_lncel_lnbts = pd.merge(
|
180 |
df_lncel_lnbts, df_physical_db, on="Code_Sector", how="left"
|
181 |
)
|
queries/process_wcdma.py
CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
from utils.config_band import config_band
|
4 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
5 |
from utils.extract_code import extract_code_from_mrbts
|
6 |
-
from utils.utils_vars import UtilsVars, WcdmaAnalysisData
|
7 |
|
8 |
WCEL_COLUMNS = [
|
9 |
"ID_WBTS",
|
@@ -153,7 +153,7 @@ def process_wcdma_data(file_path: str):
|
|
153 |
|
154 |
df_3g = df_3g[WCEL_COLUMNS]
|
155 |
|
156 |
-
df_physical_db =
|
157 |
df_3g = pd.merge(df_3g, df_band, on="code", how="left")
|
158 |
df_3g = pd.merge(df_3g, df_physical_db, on="Code_Sector", how="left")
|
159 |
# Save dataframes
|
|
|
3 |
from utils.config_band import config_band
|
4 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
5 |
from utils.extract_code import extract_code_from_mrbts
|
6 |
+
from utils.utils_vars import UtilsVars, WcdmaAnalysisData, get_physical_db
|
7 |
|
8 |
WCEL_COLUMNS = [
|
9 |
"ID_WBTS",
|
|
|
153 |
|
154 |
df_3g = df_3g[WCEL_COLUMNS]
|
155 |
|
156 |
+
df_physical_db = get_physical_db()
|
157 |
df_3g = pd.merge(df_3g, df_band, on="code", how="left")
|
158 |
df_3g = pd.merge(df_3g, df_physical_db, on="Code_Sector", how="left")
|
159 |
# Save dataframes
|
utils/utils_vars.py
CHANGED
@@ -65,20 +65,7 @@ class UtilsVars:
|
|
65 |
final_all_database = None
|
66 |
neighbors_database = ""
|
67 |
file_path = ""
|
68 |
-
physisal_db = get_physical_db()
|
69 |
-
|
70 |
-
|
71 |
-
# BSC name
|
72 |
-
# 403698 MBSCTST
|
73 |
-
# 403699 MBSC01
|
74 |
-
# 403701 MBSC04
|
75 |
-
# 403702 MBSC03
|
76 |
-
# 403703 MBSC02
|
77 |
-
# 406283 MBSKTL01
|
78 |
-
# 406284 MBSSEG01
|
79 |
-
# 406308 MBSSK0S1
|
80 |
-
|
81 |
-
# print(UtilsVars.physisal_db)
|
82 |
|
83 |
|
84 |
def get_band(text):
|
|
|
65 |
final_all_database = None
|
66 |
neighbors_database = ""
|
67 |
file_path = ""
|
68 |
+
# physisal_db = get_physical_db()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
def get_band(text):
|