Process ADJL - 2G part 1st
Browse files- queries/process_adjl.py +179 -0
- utils/config_band.py +31 -0
- utils/utils_vars.py +8 -0
queries/process_adjl.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from geopy.distance import geodesic # Imported but not used — consider removing
|
3 |
+
|
4 |
+
from queries.process_gsm import process_gsm_data
|
5 |
+
from queries.process_lte import process_lte_data
|
6 |
+
from queries.process_wcdma import process_wcdma_data
|
7 |
+
from utils.config_band import adjl_band
|
8 |
+
from utils.convert_to_excel import convert_dfs, save_dataframe
|
9 |
+
from utils.utils_vars import UtilsVars
|
10 |
+
|
11 |
+
# -------------------------------
|
12 |
+
# Constants
|
13 |
+
# -------------------------------
|
14 |
+
ADJL_GSM_COLUMNS = ["BSC", "BCF", "BTS", "ADJL", "earfcn", "lteAdjCellTac"]
|
15 |
+
|
16 |
+
ADJL_WCDMA_COLUMNS = ["RNC", "WBTS", "WCEL", "ADJL", "AdjLEARFCN"]
|
17 |
+
|
18 |
+
BTS_COLUMNS = ["ID_BTS", "name", "locationAreaIdLAC", "Code_Sector"]
|
19 |
+
|
20 |
+
LTE_COLUMNS_CONFIG = ["Code_Sector", "site_config_band"]
|
21 |
+
|
22 |
+
LTE_COLUMNS_TAC = ["Code_Sector", "tac", "band"]
|
23 |
+
|
24 |
+
LTE_COLUMNS_ADJL = ["Code_Sector", "site_config_band", "tac", "band"]
|
25 |
+
|
26 |
+
|
27 |
+
# -------------------------------
|
28 |
+
# Helper functions
|
29 |
+
# -------------------------------
|
30 |
+
def check_bands(row: pd.Series) -> bool:
|
31 |
+
"""
|
32 |
+
Verify whether all configured site bands exist in ADJL created bands.
|
33 |
+
"""
|
34 |
+
site_bands = (
|
35 |
+
set(str(row["site_config_band"]).split("/"))
|
36 |
+
if pd.notna(row["site_config_band"])
|
37 |
+
else set()
|
38 |
+
)
|
39 |
+
adjl_bands = (
|
40 |
+
set(str(row["adjl_created_band"]).split("/"))
|
41 |
+
if pd.notna(row["adjl_created_band"])
|
42 |
+
else set()
|
43 |
+
)
|
44 |
+
return site_bands.issubset(adjl_bands)
|
45 |
+
|
46 |
+
|
47 |
+
def missing_bands(row: pd.Series) -> str | None:
|
48 |
+
"""
|
49 |
+
Return missing bands from ADJL compared to site configuration.
|
50 |
+
"""
|
51 |
+
site_bands = (
|
52 |
+
set(str(row["site_config_band"]).split("/"))
|
53 |
+
if pd.notna(row["site_config_band"])
|
54 |
+
else set()
|
55 |
+
)
|
56 |
+
adjl_bands = (
|
57 |
+
set(str(row["adjl_created_band"]).split("/"))
|
58 |
+
if pd.notna(row["adjl_created_band"])
|
59 |
+
else set()
|
60 |
+
)
|
61 |
+
diff = site_bands - adjl_bands
|
62 |
+
return ",".join(diff) if diff else None
|
63 |
+
|
64 |
+
|
65 |
+
# -------------------------------
|
66 |
+
# Main Processing
|
67 |
+
# -------------------------------
|
68 |
+
def process_adjl_data(file_path: str) -> list[pd.DataFrame]:
|
69 |
+
"""
|
70 |
+
Process ADJL data from an Excel file and return structured DataFrames.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
file_path (str): Path to the input Excel file.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
list[pd.DataFrame]: [GSM_ADJL, WCDMA_ADJL, BTS, WCEL, LTE]
|
77 |
+
"""
|
78 |
+
# Read Excel sheets
|
79 |
+
dfs = pd.read_excel(
|
80 |
+
file_path,
|
81 |
+
sheet_name=["ADJL", "BTS", "WCEL"],
|
82 |
+
engine="calamine",
|
83 |
+
skiprows=[0],
|
84 |
+
)
|
85 |
+
|
86 |
+
# ------------------- BTS -------------------
|
87 |
+
df_bts = process_gsm_data(file_path)[BTS_COLUMNS]
|
88 |
+
|
89 |
+
# ------------------- WCEL -------------------
|
90 |
+
df_wcel = process_wcdma_data(file_path)
|
91 |
+
df_wcel["ID_WCEL"] = (
|
92 |
+
df_wcel[["RNC", "WBTS", "WCEL"]].astype(str).agg("_".join, axis=1)
|
93 |
+
)
|
94 |
+
|
95 |
+
# ------------------- LTE -------------------
|
96 |
+
lte_fdd_df, lte_tdd_df = process_lte_data(file_path)
|
97 |
+
lte_tdd_df = lte_tdd_df.rename(columns={"earfcn": "earfcnDL"})
|
98 |
+
lte_df = pd.concat([lte_fdd_df, lte_tdd_df], ignore_index=True)[LTE_COLUMNS_ADJL]
|
99 |
+
|
100 |
+
# Config & TAC references
|
101 |
+
lte_df_config = lte_df[LTE_COLUMNS_CONFIG]
|
102 |
+
lte_df_global_tac = (
|
103 |
+
lte_df[["Code_Sector", "tac"]]
|
104 |
+
.drop_duplicates(subset=["Code_Sector"], keep="first")
|
105 |
+
.rename(columns={"tac": "global_tac"})
|
106 |
+
)
|
107 |
+
|
108 |
+
lte_df_band_tac = lte_df[LTE_COLUMNS_TAC].copy()
|
109 |
+
lte_df_band_tac["Code_Sector_band"] = (
|
110 |
+
lte_df_band_tac[["Code_Sector", "band"]].astype(str).agg("_".join, axis=1)
|
111 |
+
)
|
112 |
+
lte_df_band_tac = lte_df_band_tac.drop(columns=["Code_Sector"])
|
113 |
+
|
114 |
+
# ------------------- ADJL -------------------
|
115 |
+
df_adjl = dfs["ADJL"]
|
116 |
+
df_adjl.columns = df_adjl.columns.str.replace(r"[ ]", "", regex=True)
|
117 |
+
|
118 |
+
gsm_adjl_df = df_adjl[ADJL_GSM_COLUMNS]
|
119 |
+
wcdma_adjl_df = df_adjl[ADJL_WCDMA_COLUMNS]
|
120 |
+
|
121 |
+
# --- GSM ADJL ---
|
122 |
+
# Filter invalid rows
|
123 |
+
gsm_adjl_df = gsm_adjl_df[
|
124 |
+
gsm_adjl_df["BSC"].notna()
|
125 |
+
& gsm_adjl_df["BCF"].notna()
|
126 |
+
& gsm_adjl_df["BTS"].notna()
|
127 |
+
].reset_index(drop=True)
|
128 |
+
|
129 |
+
# Build IDs and bands
|
130 |
+
gsm_adjl_df["ID_BTS"] = (
|
131 |
+
gsm_adjl_df[["BSC", "BCF", "BTS"]].astype(str).agg("_".join, axis=1)
|
132 |
+
)
|
133 |
+
gsm_adjl_df["ID_BTS"] = gsm_adjl_df["ID_BTS"].str.replace(".0", "", regex=False)
|
134 |
+
gsm_adjl_df["adjl_band"] = gsm_adjl_df["earfcn"].map(UtilsVars.lte_band)
|
135 |
+
|
136 |
+
# Merge BTS info
|
137 |
+
gsm_adjl_df = pd.merge(gsm_adjl_df, df_bts, on="ID_BTS", how="left")
|
138 |
+
|
139 |
+
# Aggregate ADJL band info
|
140 |
+
gsm_adjl_df_band = adjl_band(gsm_adjl_df, "ID_BTS", "adjl_band")
|
141 |
+
gsm_adjl_df = pd.merge(gsm_adjl_df, gsm_adjl_df_band, on="ID_BTS", how="left")
|
142 |
+
|
143 |
+
# Build Code_Sector_band
|
144 |
+
gsm_adjl_df["Code_Sector_band"] = (
|
145 |
+
gsm_adjl_df[["Code_Sector", "adjl_band"]].astype(str).agg("_".join, axis=1)
|
146 |
+
)
|
147 |
+
|
148 |
+
# Merge LTE references
|
149 |
+
gsm_adjl_df = gsm_adjl_df.merge(lte_df_config, on="Code_Sector", how="left")
|
150 |
+
gsm_adjl_df = gsm_adjl_df.merge(lte_df_band_tac, on="Code_Sector_band", how="left")
|
151 |
+
gsm_adjl_df = gsm_adjl_df.merge(lte_df_global_tac, on="Code_Sector", how="left")
|
152 |
+
|
153 |
+
# Final TAC
|
154 |
+
gsm_adjl_df["final_tac"] = gsm_adjl_df["tac"].fillna(gsm_adjl_df["global_tac"])
|
155 |
+
|
156 |
+
# Validations
|
157 |
+
gsm_adjl_df["check_bands"] = gsm_adjl_df.apply(check_bands, axis=1)
|
158 |
+
gsm_adjl_df["missing_bands"] = gsm_adjl_df.apply(missing_bands, axis=1)
|
159 |
+
gsm_adjl_df["check_tac"] = gsm_adjl_df["lteAdjCellTac"] == gsm_adjl_df["final_tac"]
|
160 |
+
|
161 |
+
# Drop intermediate columns
|
162 |
+
gsm_adjl_df = gsm_adjl_df.drop(
|
163 |
+
columns=["Code_Sector_band", "tac", "band", "global_tac"]
|
164 |
+
)
|
165 |
+
|
166 |
+
# Mark existing BTS
|
167 |
+
df_bts["exists"] = df_bts["ID_BTS"].isin(gsm_adjl_df["ID_BTS"])
|
168 |
+
|
169 |
+
return [gsm_adjl_df, wcdma_adjl_df, df_bts, df_wcel, lte_df]
|
170 |
+
|
171 |
+
|
172 |
+
def process_adjl_data_to_excel(file_path: str) -> None:
|
173 |
+
"""
|
174 |
+
Process ADJL data and save the result into an Excel-like format via UtilsVars.
|
175 |
+
"""
|
176 |
+
adjl_dfs = process_adjl_data(file_path)
|
177 |
+
UtilsVars.adjl_database = convert_dfs(
|
178 |
+
adjl_dfs, ["GSM_ADJL", "WCDMA_ADJL", "BTS", "WCEL", "LTE"]
|
179 |
+
)
|
utils/config_band.py
CHANGED
@@ -123,3 +123,34 @@ def lte_mrbts_band(df: pd.DataFrame) -> pd.DataFrame:
|
|
123 |
df_band.rename(columns={"band": "lte_config_band"}, inplace=True)
|
124 |
|
125 |
return df_band
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
df_band.rename(columns={"band": "lte_config_band"}, inplace=True)
|
124 |
|
125 |
return df_band
|
126 |
+
|
127 |
+
|
128 |
+
def adjl_band(df: pd.DataFrame, id_col: str, band_col: str) -> pd.DataFrame:
|
129 |
+
"""
|
130 |
+
Create a dataframe that contains the adjl configuration band for each adjl ID.
|
131 |
+
|
132 |
+
Parameters
|
133 |
+
----------
|
134 |
+
df : pd.DataFrame
|
135 |
+
The dataframe containing the adjl information, with columns "ID" and "band"
|
136 |
+
|
137 |
+
Returns
|
138 |
+
-------
|
139 |
+
pd.DataFrame
|
140 |
+
The dataframe containing the adjl configuration band for each adjl ID, with columns "ID" and "adjl_config_band"
|
141 |
+
"""
|
142 |
+
df_band = df[[id_col, band_col]].copy()
|
143 |
+
df_band["ID"] = df_band[[id_col, band_col]].astype(str).apply("_".join, axis=1)
|
144 |
+
# remove duplicates ID
|
145 |
+
df_band = df_band.drop_duplicates(subset=["ID"])
|
146 |
+
df_band = df_band[[id_col, band_col]]
|
147 |
+
df_band[band_col] = df_band[band_col].fillna("empty")
|
148 |
+
df_band = (
|
149 |
+
df_band.groupby(id_col)[band_col]
|
150 |
+
.apply(lambda x: "/".join(sorted(x)))
|
151 |
+
.reset_index()
|
152 |
+
)
|
153 |
+
# rename band to config
|
154 |
+
df_band.rename(columns={band_col: "adjl_created_band"}, inplace=True)
|
155 |
+
|
156 |
+
return df_band
|
utils/utils_vars.py
CHANGED
@@ -71,6 +71,13 @@ class UtilsVars:
|
|
71 |
"L2300": 90,
|
72 |
"L2600": 80,
|
73 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
wcdma_band = {
|
75 |
3004: "U900",
|
76 |
3006: "U900",
|
@@ -109,6 +116,7 @@ class UtilsVars:
|
|
109 |
gsm_kml_file = None
|
110 |
wcdma_kml_file = None
|
111 |
lte_kml_file = None
|
|
|
112 |
# physisal_db = get_physical_db()
|
113 |
|
114 |
|
|
|
71 |
"L2300": 90,
|
72 |
"L2600": 80,
|
73 |
}
|
74 |
+
lte_band = {
|
75 |
+
1786: "L1800",
|
76 |
+
6350: "L800",
|
77 |
+
3050: "L2600",
|
78 |
+
38750: "L2300",
|
79 |
+
1761: "L1800",
|
80 |
+
}
|
81 |
wcdma_band = {
|
82 |
3004: "U900",
|
83 |
3006: "U900",
|
|
|
116 |
gsm_kml_file = None
|
117 |
wcdma_kml_file = None
|
118 |
lte_kml_file = None
|
119 |
+
adjl_database = None
|
120 |
# physisal_db = get_physical_db()
|
121 |
|
122 |
|