import torch from torch import nn from transformers import BertTokenizer, BertForSequenceClassification, AdamW from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from tqdm import tqdm import gradio as gr model_name = 'neuralmind/bert-base-portuguese-cased' tokenizer = BertTokenizer.from_pretrained(model_name) def predict(model, loader): model.eval() predictions = [] with torch.no_grad(): for batch in loader: input_ids, attention_mask = batch input_ids = input_ids.to(device) attention_mask = attention_mask.to(device) outputs = model(input_ids, attention_mask=attention_mask) logits = outputs.logits batch_predictions = logits.argmax(dim=1).cpu().tolist() predictions.extend(batch_predictions) return predictions def generate_predictions(text): input_encodings = tokenizer( text, truncation=True, padding=True, max_length=512, return_tensors='pt' ) input_dataset = torch.utils.data.TensorDataset( input_encodings['input_ids'], input_encodings['attention_mask'] ) input_loader = torch.utils.data.DataLoader( input_dataset, batch_size=1, shuffle=False, num_workers=0, pin_memory=True ) # Make predictions predictions = predict(loaded_model, input_loader) return predictions[0] # Specify the device as CPU device = torch.device('cpu') # Load the saved model and map it to the CPU loaded_model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2) loaded_model.load_state_dict(torch.load('/content/drive/MyDrive/best_model8.pt', map_location=device)) loaded_model.to(device) # Define the Gradio interface iface = gr.Interface( fn=generate_predictions, inputs=gr.inputs.Textbox(lines=5, label="Input Text"), outputs=gr.outputs.Label(label="Prediction"), examples=[ ["Seu Comunista!"], ['Os imigrantes não deveriam ser impedidos de entrar no meu país'], ['Os imigrantes deveriam ser impedidos de entrar no meu país'], ['eu te amo], ['aquele cara é um babaca'], ] ) # Launch the interface iface.launch()