|
import joblib
|
|
from transformers import AutoFeatureExtractor, Wav2Vec2Model
|
|
import torch
|
|
import librosa
|
|
import numpy as np
|
|
from sklearn.linear_model import LogisticRegression
|
|
import gradio as gr
|
|
import os
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
class CustomWav2Vec2Model(Wav2Vec2Model):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.encoder.layers = self.encoder.layers[:9]
|
|
|
|
truncated_model = CustomWav2Vec2Model.from_pretrained("facebook/wav2vec2-xls-r-2b")
|
|
|
|
class HuggingFaceFeatureExtractor:
|
|
def __init__(self, model, feature_extractor_name):
|
|
self.device = device
|
|
self.feature_extractor = AutoFeatureExtractor.from_pretrained(feature_extractor_name)
|
|
self.model = model
|
|
self.model.eval()
|
|
self.model.to(self.device)
|
|
|
|
def __call__(self, audio, sr):
|
|
inputs = self.feature_extractor(
|
|
audio,
|
|
sampling_rate=sr,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
)
|
|
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
|
with torch.no_grad():
|
|
outputs = self.model(**inputs, output_hidden_states=True)
|
|
return outputs.hidden_states[9]
|
|
|
|
FEATURE_EXTRACTOR = HuggingFaceFeatureExtractor(truncated_model, "facebook/wav2vec2-xls-r-2b")
|
|
classifier,scaler, thresh = joblib.load('logreg_margin_pruning_ALL_with_scaler+threshold.joblib')
|
|
|
|
def segment_audio(audio, sr, segment_duration):
|
|
segment_samples = int(segment_duration * sr)
|
|
total_samples = len(audio)
|
|
segments = [audio[i:i + segment_samples] for i in range(0, total_samples, segment_samples)]
|
|
return segments
|
|
|
|
def process_audio(input_data, segment_duration=10):
|
|
audio, sr = librosa.load(input_data, sr=16000)
|
|
if len(audio.shape) > 1:
|
|
audio = audio[0]
|
|
segments = segment_audio(audio, sr, segment_duration)
|
|
segment_predictions = []
|
|
output_lines = []
|
|
eer_threshold = thresh - 5e5
|
|
for idx, segment in enumerate(segments):
|
|
features = FEATURE_EXTRACTOR(segment, sr)
|
|
features_avg = torch.mean(features, dim=1).cpu().numpy()
|
|
features_avg = features_avg.reshape(1, -1)
|
|
decision_score = classifier.decision_function(features_avg)
|
|
decision_score_scaled = scaler.transform(decision_score.reshape(-1, 1)).flatten()
|
|
if decision_score_scaled >= eer_threshold:
|
|
pred = 1
|
|
confidence_percentage = decision_score_scaled[0] * 100
|
|
else:
|
|
pred = 0
|
|
confidence_percentage = (1 - decision_score_scaled[0]) * 100
|
|
segment_predictions.append(pred)
|
|
line = f"Segment {idx + 1}: {'Real' if pred == 1 else 'Fake'} (Confidence: {round(confidence_percentage, 2)}%)"
|
|
output_lines.append(line)
|
|
overall_prediction = 1 if sum(segment_predictions) > (len(segment_predictions) / 2) else 0
|
|
overall_line = f"Overall Prediction: {'Real' if overall_prediction == 1 else 'Fake'}"
|
|
output_str = overall_line + "\n" + "\n".join(output_lines)
|
|
return output_str
|
|
|
|
def gradio_interface(audio):
|
|
if audio:
|
|
return process_audio(audio)
|
|
else:
|
|
return "please upload an audio file"
|
|
|
|
interface = gr.Interface(
|
|
fn=gradio_interface,
|
|
inputs=[gr.Audio(type="filepath", label="Upload Audio")],
|
|
outputs="text",
|
|
title="SOL2 Audio Deepfake Detection Demo",
|
|
description="Upload an audio file to check if it's AI-generated",
|
|
)
|
|
|
|
interface.launch(share=True)
|
|
|