DavidCombei's picture
Upload 2 files
01c10d0 verified
raw
history blame
3.62 kB
import joblib
from transformers import AutoFeatureExtractor, Wav2Vec2Model
import torch
import librosa
import numpy as np
from sklearn.linear_model import LogisticRegression
import gradio as gr
import os
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class CustomWav2Vec2Model(Wav2Vec2Model):
def __init__(self, config):
super().__init__(config)
self.encoder.layers = self.encoder.layers[:9]
truncated_model = CustomWav2Vec2Model.from_pretrained("facebook/wav2vec2-xls-r-2b")
class HuggingFaceFeatureExtractor:
def __init__(self, model, feature_extractor_name):
self.device = device
self.feature_extractor = AutoFeatureExtractor.from_pretrained(feature_extractor_name)
self.model = model
self.model.eval()
self.model.to(self.device)
def __call__(self, audio, sr):
inputs = self.feature_extractor(
audio,
sampling_rate=sr,
return_tensors="pt",
padding=True,
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs, output_hidden_states=True)
return outputs.hidden_states[9]
FEATURE_EXTRACTOR = HuggingFaceFeatureExtractor(truncated_model, "facebook/wav2vec2-xls-r-2b")
classifier,scaler, thresh = joblib.load('logreg_margin_pruning_ALL_with_scaler+threshold.joblib')
def segment_audio(audio, sr, segment_duration):
segment_samples = int(segment_duration * sr)
total_samples = len(audio)
segments = [audio[i:i + segment_samples] for i in range(0, total_samples, segment_samples)]
return segments
def process_audio(input_data, segment_duration=10):
audio, sr = librosa.load(input_data, sr=16000)
if len(audio.shape) > 1:
audio = audio[0]
segments = segment_audio(audio, sr, segment_duration)
segment_predictions = []
output_lines = []
eer_threshold = thresh - 5e5 # small margin error due to feature extractor space differences
for idx, segment in enumerate(segments):
features = FEATURE_EXTRACTOR(segment, sr)
features_avg = torch.mean(features, dim=1).cpu().numpy()
features_avg = features_avg.reshape(1, -1)
decision_score = classifier.decision_function(features_avg)
decision_score_scaled = scaler.transform(decision_score.reshape(-1, 1)).flatten()
if decision_score_scaled >= eer_threshold:
pred = 1
confidence_percentage = decision_score_scaled[0] * 100
else:
pred = 0
confidence_percentage = (1 - decision_score_scaled[0]) * 100
segment_predictions.append(pred)
line = f"Segment {idx + 1}: {'Real' if pred == 1 else 'Fake'} (Confidence: {round(confidence_percentage, 2)}%)"
output_lines.append(line)
overall_prediction = 1 if sum(segment_predictions) > (len(segment_predictions) / 2) else 0
overall_line = f"Overall Prediction: {'Real' if overall_prediction == 1 else 'Fake'}"
output_str = overall_line + "\n" + "\n".join(output_lines)
return output_str
def gradio_interface(audio):
if audio:
return process_audio(audio)
else:
return "please upload an audio file"
interface = gr.Interface(
fn=gradio_interface,
inputs=[gr.Audio(type="filepath", label="Upload Audio")],
outputs="text",
title="SOL2 Audio Deepfake Detection Demo",
description="Upload an audio file to check if it's AI-generated",
)
interface.launch(share=True)