Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,690 Bytes
ab0b635 18f379e d3785a6 18f379e ab0b635 feccc25 ab0b635 2506b33 ab0b635 1c0c5e9 ab0b635 feccc25 ab0b635 7540236 ab0b635 213def4 ab0b635 feccc25 ab0b635 3e20255 29531b7 d2e1407 29531b7 1c0c5e9 29531b7 ab0b635 1c0c5e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
import torch
if not hasattr(torch, 'float8_e4m3fn'):
torch.float8_e4m3fn = torch.float32
try:
import huggingface_patch
print("huggingface_hub patch has been applied")
except ImportError:
print("Warning: Failed to import the huggingface_patch module")
from PIL import Image, ImageEnhance
import numpy as np
import gradio as gr
from diffusers import StableDiffusionImg2ImgPipeline
import time
import os
import base64
import spaces
from io import BytesIO
class DogStyleTransfer:
"""
Class for handling dog image style transfer using Stable Diffusion.
This class manages model loading, image preprocessing, and style transfer operations.
"""
def __init__(self):
self.models = {}
self.device = 'cpu'
# Check xformers availability
self.xformers_available = False
try:
import xformers
self.xformers_available = True
print(f"xformers {xformers.__version__} is available and will be used for memory-efficient attention")
except ImportError:
print("xformers not found - will use default attention mechanism")
except Exception as e:
print(f"Error checking xformers: {str(e)} - will use default attention mechanism")
# Define style to model mapping based on availability
if self.device == "cuda":
self.style_model_mapping = {
"Japanese Anime Style": "Linaqruf/anything-v3.0",
"Classic Cartoon": "nitrosocke/mo-di-diffusion",
"Oil Painting": "runwayml/stable-diffusion-v1-5",
"Watercolor": "dreamlike-art/dreamlike-photoreal-2.0",
"Cyberpunk": "dreamlike-art/dreamlike-diffusion-1.0"
}
else:
# Lightweight models for CPU mode
self.style_model_mapping = {
"Japanese Anime Style": "runwayml/stable-diffusion-v1-5",
"Classic Cartoon": "runwayml/stable-diffusion-v1-5",
"Oil Painting": "runwayml/stable-diffusion-v1-5",
"Watercolor": "runwayml/stable-diffusion-v1-5",
"Cyberpunk": "runwayml/stable-diffusion-v1-5"
}
# style prompts with each feature
self.style_prompts = {
"Japanese Anime Style": "masterpiece, highest quality, genuine anime style illustration of a (dog:1.5), (bold anime aesthetics:1.5), (vibrant saturated colors:1.3), clean distinct lineart, stylized simplified features, expressive anime eyes, (preserve exact animal species:1.8), (maintain original animal breed:1.7), distinctive animal characteristics, (iconic anime art style:1.4), dramatic shading, flat color areas with highlight accents, simplified background elements, characteristic anime proportions, retain animal identity while stylizing, professional anime production quality, no watermarks, no signatures, (do not change animal species:1.8)",
"Classic Cartoon": "masterpiece, highest quality classic cartoon illustration of a dog, (golden age animation style:1.3), hand-drawn cel animation quality, bold clean outlines, (vibrant solid color fills:1.2), exaggerated expressive features, playful animated poses, classic Disney/Pixar influenced design, professional animation studio quality, simplified but expressive details, perfect smooth linework, rounded stylized forms, cheerful color palette, dynamic motion lines, classic cartoon physics, expressive oversized eyes, joyful personality captured, squash and stretch principles applied, classic cartoon proportions, professional character design, perfect animation keyframe quality, appealing character expression, masterful use of simple shapes, iconic cartoon aesthetic, no watermarks, no signatures",
"Oil Painting": "masterpiece, museum quality oil painting of a dog, (impasto technique:1.3), visible textured brushstrokes, layered oil pigments, rich depth of color, classical composition, (dramatic chiaroscuro lighting:1.2), Renaissance painting technique, glazing layers, sophisticated color harmony, warm and cool tones balance, expert painterly details, canvas texture visible, traditional realistic portrait style, fine art quality, gallery exhibition standard, rich shadows and highlights, volumetric form definition, atmospheric perspective, professional oil painting techniques, traditional varnished finish, color complexity with subtle undertones, expertly captured fur textures, strong compositional focus, emotional depth, timeless artistic quality, no watermarks, no signatures",
"Watercolor": "masterpiece, highest quality watercolor painting of a dog, (wet-on-wet technique:1.3), flowing color blends, translucent paint layers, visible paper texture, (controlled paint blooms:1.2), delicate color washes, spontaneous paint flow, preserved white spaces, soft color bleeding effects, subtle granulation textures, feathered edges, luminous transparency, loose expressive brushwork, artistic color pooling, gradient color transitions, minimalist background, playful splatter accents, artistic negative space usage, light-filled composition, watercolor paper grain visible, atmospheric color diffusion, professional traditional watercolor techniques, delicate brush details combined with flowing textures, no watermarks, no signatures",
"Cyberpunk": "masterpiece, highest quality, hyper-detailed cyberpunk digital art of a dog, (advanced technological integration:1.4), holographic collar interface, bionic limb enhancements, neural implant visuals, data visualization overlay, augmented reality HUD elements, (neon light reflections:1.3), wet street reflections, volumetric fog effects, urban dystopian background, megacity skyline, glowing circuitry details, optical fiber accents, synthetic materials, dramatic neon-lit contrast, cybernetic enhancements, high tech visors, digital distortion effects, information flow visualization, glitchy textures, metallic surfaces with advanced patina, dark atmospheric tone with vibrant neon accents, electrical energy effects, retro-futuristic design elements, near-future technology aesthetic, no watermarks, no signatures"
}
# Feature preservation prompts with weighted emphasis
self.feature_preservation = {
"common": "faithful representation of original animal species:(1.6), preserve original animal face structure:(1.5), maintain exact species characteristics:(1.4), accurate distinctive features:(1.3), consistent anatomical structure:(1.2), recognizable animal identity",
"Japanese Anime Style": "anime style dog with preserved realistic proportions, distinctive dog breed characteristics maintained, dog facial features clearly recognizable",
"Classic Cartoon": "cartoon style with accurate dog proportions, characteristic breed features preserved, recognizable dog expressions",
"Oil Painting": "oil painting technique while maintaining anatomical accuracy, realistic dog proportions, distinctive breed characteristics",
"Watercolor": "watercolor aesthetic with precise breed representation, accurate dog anatomy, distinctive dog features preserved",
"Cyberpunk": "cyberpunk elements while maintaining accurate dog proportions, recognizable breed features, true-to-life dog expression"
}
# Negative prompts
self.negative_prompts = {
"common": "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limbs, missing limbs, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, watermark, signature, text, change of species, wrong animal species, incorrect animal type, different animal, human features",
"dog_specific": "human face, human features, anthropomorphic, humanoid, human-like features, cartoon eyes, unrealistic eyes",
"Japanese Anime Style": "photorealistic, 3d render, western cartoon style, pixar style, realistic textured skin",
"Classic Cartoon": "anime style, manga, realistic, detailed skin texture, painterly, sketch, watercolor style",
"Oil Painting": "flat colors, digital art, cartoon, cell shaded, smooth texture, anime style",
"Watercolor": "digital art, 3d render, vector art, perfect linework, hard edges, bold lines",
"Cyberpunk": "watercolor paint, oil painting, natural scene, traditional art, vintage style, soft colors",
"species_preservation": "species transformation, change of animal type, incorrect animal features, wrong animal proportions, mixed animal characteristics"
}
# Style descriptions for UI display
self.style_descriptions = {
"Japanese Anime Style": "Characterized by vibrant colors, large expressive eyes, and stylized features common in Japanese animation.",
"Classic Cartoon": "Friendly, rounded features with bold outlines and bright colors typical of classic animated films.",
"Oil Painting": "Rich textures and depth created through visible brushstrokes and layered color application.",
"Watercolor": "Soft, transparent washes of color with flowing transitions and subtle color blending.",
"Cyberpunk": "Futuristic sci-fi aesthetic with neon colors, high contrast, and technological elements."
}
# Set model cache path
self.model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "dog_style_transfer")
os.makedirs(self.model_cache_dir, exist_ok=True)
# Display system info for debugging
self._print_system_info()
def _print_system_info(self):
"""Print system information for debugging purposes"""
print("\n===== System Information =====")
print(f"Device: {self.device}")
print(f"PyTorch version: {torch.__version__}")
if self.device == "cuda":
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda if hasattr(torch.version, 'cuda') else 'Unknown'}")
print(f"GPU: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'Not available'}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB" if torch.cuda.is_available() else "Not available")
print(f"xformers available: {self.xformers_available}")
print("============================\n")
@spaces.GPU
def load_model(self, style_name):
"""Load the appropriate model based on style, handling xformers compatibility"""
if not hasattr(self, '_cuda_initialized'):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self._cuda_initialized = True
# Get model ID for the style
model_id = self.style_model_mapping.get(style_name, "runwayml/stable-diffusion-v1-5")
# Check if model is already loaded
if model_id not in self.models:
print(f"Loading model {model_id} for {style_name} style...")
try:
# Load model with cache directory
model = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
cache_dir=self.model_cache_dir,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
safety_checker=None, # Remove safety checker to improve speed
)
if self.device == "cuda":
model = model.to("cuda")
# Enable memory optimization
model.enable_attention_slicing()
# Try to enable xformers
try:
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
print("Attempting to enable xformers memory efficient attention...")
model.enable_xformers_memory_efficient_attention()
print("xformers memory efficient attention enabled successfully!")
except Exception as e:
print(f"Warning: Could not enable xformers memory efficient attention: {e}")
print("Proceeding without xformers optimization - this may use more memory but should still work.")
# Store model
self.models[model_id] = model
print(f"Model {model_id} loaded successfully!")
except Exception as e:
print(f"Error loading model {model_id}: {str(e)}")
# Fall back to basic model if specific model fails
if model_id != "runwayml/stable-diffusion-v1-5":
print("Falling back to default model...")
return self.load_model("Oil Painting") # Use generic model as fallback
raise
return self.models[model_id]
def preprocess_image(self, image, animal_type='dog'):
"""Enhanced preprocessing for dog images before style transfer"""
# Convert to PIL image if needed
if isinstance(image, np.ndarray):
# Handle RGBA images by converting to RGB
if image.shape[2] == 4:
image = image[:, :, :3]
image = Image.fromarray(np.uint8(image))
# Resize while maintaining aspect ratio
width, height = image.size
max_size = 512 # SD models typically use 512x512 input
scaling_factor = min(max_size / width, max_size / height)
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
image = image.resize((new_width, new_height), Image.LANCZOS)
# Enhance contrast to emphasize dog features
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.2) # Slightly enhance contrast
# Sharpen to improve detail
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.3) # Enhance sharpness
# Pad if not 512x512, instead of cropping
if new_width != 512 or new_height != 512:
new_img = Image.new("RGB", (512, 512), (255, 255, 255))
# Center the resized image
offset = ((512 - new_width) // 2, (512 - new_height) // 2)
new_img.paste(image, offset)
image = new_img
if animal_type != 'dog':
self.feature_preservation['common'] = 'strict preservation of original animal species:(1.8),' + self.feature_preservation["common"]
return image
@spaces.GPU
def transform_style(self, image, style_name, strength=0.75, guidance_scale=7.5):
"""
Transform image to selected style with improved prompts and parameters
Args:
image: Input image
style_name: Name of the style to apply
strength: Style transformation strength (0-1)
guidance_scale: Guidance scale for stable diffusion
Returns:
tuple: (transformed_image, error_message)
"""
try:
if image is None:
return None, "Please upload a dog image first!"
start_time = time.time()
print(f"Starting style transfer: {style_name}")
# Adjust parameters based on style
if style_name == "Japanese Anime Style":
guidance_scale = 9.0 # Higher guidance for anime style
strength = 0.8
num_steps = 50
elif style_name == "Classic Cartoon":
guidance_scale = 8.0
strength = 0.75
num_steps = 40
elif style_name == "Oil Painting" or style_name == "Watercolor":
guidance_scale = 8.0 # Medium guidance for art styles
strength = 0.85
num_steps = 50
elif style_name == "Cyberpunk":
guidance_scale = 10.0 # Very high guidance for cyberpunk
strength = 0.85
num_steps = 50
else:
num_steps = 40
# Load model for style
try:
pipe = self.load_model(style_name)
except Exception as e:
print(f"Failed to load specific model for {style_name}: {str(e)}")
# Fall back to default model
pipe = self.load_model("Oil Painting")
# Enhanced image preprocessing
pil_image = self.preprocess_image(image)
# Get style prompt and add feature preservation
base_prompt = self.style_prompts.get(style_name, "digital art style, a dog")
# Feature preservation prompts - combining common and style-specific
feature_preservation = f"{self.feature_preservation['common']}, {self.feature_preservation.get(style_name, '')}"
# Enhanced positive prompt with feature preservation
prompt = f"{base_prompt}, {feature_preservation}, (high quality, detailed, sharp focus, professional photography):(1.2)"
# Use negative prompt - combining common and style-specific
negative_prompt = f"{self.negative_prompts['common']}, {self.negative_prompts['dog_specific']}, {self.negative_prompts.get(style_name, '')}"
print(f"Using prompt: {prompt}")
print(f"Using negative prompt: {negative_prompt}")
print(f"Transformation parameters - Strength: {strength}, Guidance Scale: {guidance_scale}, Steps: {num_steps}")
# Limit steps if too large to avoid memory issues
if num_steps > 60 and self.device == "cuda":
print("Reducing inference steps to save memory")
num_steps = 60
try:
# Generate transformed image
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=pil_image,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=num_steps
).images[0]
except RuntimeError as e:
# Handle CUDA out of memory errors
if "CUDA out of memory" in str(e):
print("CUDA out of memory error, trying with reduced parameters")
# Retry with lower settings
return self._retry_with_lower_settings(pipe, prompt, negative_prompt, pil_image, strength, guidance_scale)
else:
# Try without negative prompt
print(f"Error with negative prompt, retrying without it: {str(e)}")
try:
result = pipe(
prompt=prompt,
image=pil_image,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=30 # Reduce steps
).images[0]
except Exception as retry_error:
print(f"Retry also failed: {str(retry_error)}")
raise
proc_time = time.time() - start_time
print(f"Style transfer completed in {proc_time:.2f} seconds")
return np.array(result), None
except Exception as e:
error_message = str(e)
# Provide user-friendly error messages
if "xformers" in error_message.lower():
print(f"xformers related error: {error_message}")
return None, "Style transfer error: xformers optimization unavailable, but functionality not affected. Please click 'Transform Style' button again to continue."
elif "CUDA out of memory" in error_message:
print(f"CUDA memory error: {error_message}")
return None, "GPU memory insufficient. Try reducing parameters or using a smaller image."
else:
print(f"Error during style transfer: {error_message}")
return None, f"Style transfer error: {error_message}"
def _retry_with_lower_settings(self, pipe, prompt, negative_prompt, image, strength, guidance_scale):
"""Retry with lower settings when memory is insufficient"""
try:
# First attempt: Reduce inference steps
print("Attempting with lower settings (steps=20)...")
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=20 # Significantly reduce steps
).images[0]
return np.array(result), None
except Exception as first_error:
# Log first failure
print(f"First retry attempt failed: {str(first_error)}")
# Second attempt: Minimum settings
try:
print("Attempting with minimum settings (steps=15, strength=0.6)...")
result = pipe(
prompt=prompt,
image=image,
strength=0.6, # Lower strength
guidance_scale=7.0, # Use standard setting
num_inference_steps=15 # Minimum steps
).images[0]
return np.array(result), None
except Exception as second_error:
# Log all failures
print(f"Second retry attempt also failed: {str(second_error)}")
print("All retry attempts failed")
# Return clear error message
error_msg = f"Unable to complete style transfer, even with minimal settings: {str(second_error)}"
return None, error_msg
def get_available_styles(self):
"""Get all available style options"""
return list(self.style_prompts.keys())
def get_style_description(self, style_name):
"""Get description for a specific style"""
return self.style_descriptions.get(style_name, "")
def get_model_info(self, style_name):
"""Get the model information for a specific style"""
model_id = self.style_model_mapping.get(style_name, "runwayml/stable-diffusion-v1-5")
return f"Powered by: {model_id}"
def get_image_download_link(self, image):
"""
Generate a data URL for downloading the image
Args:
image: PIL Image or numpy array
Returns:
str: Base64 encoded data URL
"""
if image is None:
return None
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(np.uint8(image))
# Save image to bytes buffer
buffer = BytesIO()
image.save(buffer, format="PNG")
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
def create_style_transfer_tab(dog_style_transfer):
"""Create style transfer tab with UI components"""
with gr.Column():
gr.Markdown("""
# 🎨 Dog Style Transformation
Transform your dog photos into different artistic styles! Upload a dog picture, choose your preferred style, and create unique artwork.
""")
gr.HTML("""
<div style="
text-align: center;
padding: 16px;
margin: 16px 0;
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
border-radius: 10px;
border: 1px solid rgba(66, 153, 225, 0.2);
box-shadow: 0 3px 10px rgba(0,0,123,0.1);
">
<h3 style="color: #333;">🐶 Upload a dog photo and select an artistic style</h3>
<p>After uploading your dog photo, the system will transform it into your chosen artistic style. Try different styles to create stunning effects!</p>
<p>The system uses specialized models for each style to ensure the best results.</p>
<p style="margin-top: 10px; padding: 8px; background-color: #fff9e6; border-left: 4px solid #ffd966; border-radius: 4px;"><b>⏱️ Patience is a virtue!</b> While AI is working its magic, your dog might have time to learn a new trick or two. The transformation can take up to 30 seconds, depending on how photogenic your furry friend is! 🐾</p>
<p style="margin-top: 10px; padding: 8px; background-color: #e6f9ff; border-left: 4px solid #66c2ff; border-radius: 4px;"><b>🤫 A Little Secret:</b> Although I designed this tool for dogs, it can actually transform any photo! Portraits, landscapes, even your favorite teddy bear, feel free to try them all! Just don't tell the other dogs… they might get jealous! 😉</p>
<p style="margin-top: 10px; padding: 8px; background-color: #e6f9e6; border-left: 4px solid #66cc77; border-radius: 4px;"><b>✨ Unlimited Creativity!</b> Sometimes, AI might surprise you with unexpected creative interpretations, adding unique colors or features to your image. ✨</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
# Upload image component
input_image = gr.Image(
label="Upload Dog Photo",
type="numpy"
)
style_dropdown = gr.Dropdown(
choices=dog_style_transfer.get_available_styles(),
value=dog_style_transfer.get_available_styles()[0],
label="Select Artistic Style"
)
# Display style description
style_description = gr.Markdown(
dog_style_transfer.get_style_description(dog_style_transfer.get_available_styles()[0])
)
# Display model info
model_info = gr.Markdown(
dog_style_transfer.get_model_info(dog_style_transfer.get_available_styles()[0])
)
with gr.Row():
strength_slider = gr.Slider(
minimum=0.3,
maximum=0.9,
value=0.75,
step=0.05,
label="Style Intensity (lower values preserve more original details)"
)
# customize Transform style buttom
style_button = gr.Button("Transform Style", variant="primary")
gr.Markdown("""
<style>
button.primary {
background: linear-gradient(90deg, #ff6b6b, #ffa36b, #ffd56b) !important;
color: white !important;
font-weight: 600 !important;
text-shadow: 0 1px 1px rgba(0,0,0,0.2) !important;
border: none !important;
}
button.primary:hover {
background: linear-gradient(90deg, #ff5b5b, #ff936b, #ffcf6b) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.3) !important;
}
</style>
""")
# Progress indicator
status_indicator = gr.Textbox(
label="Status",
value="Upload an image and press 'Transform Style' to begin",
interactive=False
)
error_output = gr.Textbox(
visible=False,
label="Error Message"
)
with gr.Column(scale=1):
# Output image component
output_image = gr.Image(
label="Style Transformation Result"
)
# Hidden component to store the download link
download_link = gr.HTML(visible=False)
# HTML component for actual download
download_html = gr.HTML(visible=False)
gr.Markdown("""
### Tips for Best Results
- Use images with clear dog features and good lighting
- For best results, use images where the dog is the main subject
- Different styles work better with different dog breeds
- Lower the style intensity to preserve more original details
""")
gr.HTML("""
<style>
.style-box {
background: linear-gradient(145deg, #ffffff, #f5f7fa);
border-radius: 12px;
box-shadow: 0 4px 20px rgba(0,0,0,0.08);
padding: 25px 30px;
margin: 30px 0;
border: 1px solid rgba(0,0,0,0.05);
position: relative;
}
.style-box::before {
content: '';
position: absolute;
top: 0;
left: 0;
width: 6px;
height: 100%;
background: linear-gradient(to bottom, #ff6b6b, #ffa36b, #ffd56b);
border-radius: 6px 0 0 6px;
}
.style-box h2 {
color: #333;
font-size: 24px;
margin-bottom: 20px;
padding-bottom: 10px;
border-bottom: 2px solid #f0f0f0;
}
.style-name {
font-weight: bold;
color: #333;
}
.style-desc {
margin-bottom: 15px;
padding-bottom: 15px;
border-bottom: 1px solid #f0f0f0;
}
.style-desc:last-child {
margin-bottom: 0;
padding-bottom: 0;
border-bottom: none;
}
</style>
<div class="style-box">
<h2>Style Effect Descriptions</h2>
<p>Each style transforms your dog photo in a unique way:</p>
<div class="style-desc">
<p><span class="style-name">Japanese Anime Style:</span> Vibrant artwork with fluid animation qualities, expressive features, and dramatic lighting effects. Features soft color gradients, detailed line work, and emotional depth.</p>
</div>
<div class="style-desc">
<p><span class="style-name">Classic Cartoon:</span> Traditional animation style with bold outlines, solid color fills, and playful character design. Displays exaggerated expressions, simplified forms, and dynamic poses.</p>
</div>
<div class="style-desc">
<p><span class="style-name">Oil Painting:</span> Classical art technique with visible textured brushstrokes and layered color application. Shows rich depth, dramatic lighting contrast, and sophisticated color harmony.</p>
</div>
<div class="style-desc">
<p><span class="style-name">Watercolor:</span> Delicate painting style with flowing color blends and translucent layers. Features soft edges, color bleeding effects, and visible paper texture elements.</p>
</div>
<div class="style-desc">
<p><span class="style-name">Cyberpunk:</span> High-tech futuristic aesthetic with advanced technological elements and neon accents. Incorporates holographic interfaces, digital effects, and urban dystopian elements.</p>
</div>
</div>
""")
# Setup event triggers
def update_progress(value, desc):
"""Update progress bar and description"""
return gr.update(value=value), gr.update(value=desc)
def process_style_transfer(image, style, strength):
"""Process style transfer and prepare download options"""
if image is None:
return (
None,
gr.update(visible=True, value="Please upload a dog image first!"),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value="Upload an image and press 'Transform Style' to begin")
)
# Display processing status
status_message = "Processing your image... This may take a moment."
# Perform style transfer
result, error = dog_style_transfer.transform_style(
image,
style,
strength
)
if error:
return (
None,
gr.update(visible=True, value=error),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value="Error occurred. Please try again.")
)
# Generate download link for the image
if result is not None:
pil_image = Image.fromarray(result)
download_data = dog_style_transfer.get_image_download_link(pil_image)
download_html_content = f"""
<style>
.download-btn {{
display: inline-block;
background: linear-gradient(90deg, #3498db, #2ecc71);
color: white !important; /* 確保文字為白色 */
text-shadow: 0 1px 2px rgba(0,0,0,0.3) !important; /* 增強文字陰影使白色更突出 */
font-weight: 700 !important; /* 加粗字體 */
padding: 12px 24px;
text-align: center;
text-decoration: none;
font-size: 16px;
border-radius: 25px;
cursor: pointer;
transition: all 0.3s ease;
border: none;
box-shadow: 0 3px 6px rgba(0,0,0,0.16);
letter-spacing: 0.5px; /* 字母間距,提高可讀性 */
}}
.download-btn:hover {{
transform: translateY(-2px);
box-shadow: 0 5px 10px rgba(0,0,0,0.25);
background: linear-gradient(90deg, #2980b9, #27ae60);
}}
.download-btn:active {{
transform: translateY(0);
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}}
</style>
<a href="{download_data}" download="dog_{style.replace(' ', '_')}.png" class="download-btn">
Download Transformed Image
</a>
"""
# Store download data in a hidden element
# We'll make this invisible to avoid showing base64 encoded data
hidden_download_data = download_data
return (
result,
gr.update(visible=False),
gr.update(visible=False, value=hidden_download_data), # Keep the data hidden
gr.update(visible=True, value=download_html_content), # Show the HTML button
gr.update(value="Transform Completed! You can download the image")
)
else:
# Handle the case where result is None but no error was returned
return (
None,
gr.update(visible=True, value="Style transfer failed with no specific error. Please try again."),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value="Something went wrong. Please try again.")
)
# Update style description and model info
def update_style_info(style):
return dog_style_transfer.get_style_description(style), dog_style_transfer.get_model_info(style)
style_button.click(
fn=process_style_transfer,
inputs=[input_image, style_dropdown, strength_slider],
outputs=[
output_image,
error_output,
download_link,
download_html,
]
)
style_dropdown.change(
fn=update_style_info,
inputs=[style_dropdown],
outputs=[style_description, model_info]
)
# Add example images
example_dogs = [
["Border_Collie.jpg", "Japanese Anime Style"],
["Golden_Retriever.jpeg", "Classic Cartoon"],
["Saint_Bernard.jpeg", "Oil Painting"],
["Samoyed.jpeg", "Watercolor"],
["French_Bulldog.jpeg", "Cyberpunk"]
]
# Check if Examples feature is available
try:
gr.Examples(
examples=example_dogs,
inputs=[input_image, style_dropdown]
)
except Exception as e:
print(f"Note: Examples feature not available in your Gradio version: {e}")
gr.HTML("""
<style>
.attribution-box {
font-size: 0.85em;
color: #666;
margin-top: 20px;
padding: 18px;
border-radius: 8px;
background-color: #f8f9fa;
border: 1px solid #e9ecef;
font-style: italic;
}
.attribution-box h4 {
margin-top: 0;
color: #495057;
font-style: normal;
font-weight: 600;
margin-bottom: 12px;
}
.attribution-box p {
margin: 8px 0;
line-height: 1.5;
}
</style>
<div class="attribution-box">
<h4>Attribution</h4>
<p>This application uses pre-trained diffusion models from Hugging Face for image style transfer. All models are used according to their respective open source licenses for educational and non-commercial purposes.</p>
<p>Powered by the open source Diffusers library from Hugging Face.</p>
</div>
""")
return input_image, style_dropdown, style_button, output_image |