PawMatchAI / breed_visualization.py
DawnC's picture
Update breed_visualization.py
533e893 verified
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import sqlite3
from matplotlib.figure import Figure
from typing import Dict, List, Optional, Tuple
import pandas as pd
from PIL import Image
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
def create_visualization_tab(dog_breeds, get_dog_description, calculate_compatibility_score, UserPreferences):
"""Create a visualization tab for breed characteristic analysis"""
# Create shared state container
shared_preferences = gr.State({
"living_space": "apartment",
"yard_access": "no_yard",
"exercise_time": 60,
"exercise_type": "moderate_activity",
"grooming_commitment": "medium",
"experience_level": "beginner",
"noise_tolerance": "medium",
"has_children": False,
"children_age": "school_age",
"climate": "moderate"
})
gr.HTML("""
<div style='
text-align: center;
padding: 20px 0;
margin: 15px 0;
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
border-radius: 10px;
'>
<p style='
font-size: 1.2em;
margin: 0;
padding: 0 20px;
line-height: 1.5;
background: linear-gradient(90deg, #4299e1, #48bb78);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-weight: 600;
'>
Gain deeper insight into dog breed characteristics through visualization to help you make a more informed choice.
</p>
</div>
""")
with gr.Tabs():
# Single breed radar chart analysis tab
with gr.TabItem("Breed Radar Chart Analysis"):
with gr.Row():
with gr.Column(scale=1):
# User interface components - Left side
breed_choices = [(breed.replace('_', ' '), breed) for breed in sorted(dog_breeds)]
breed_dropdown = gr.Dropdown(
label="Select Breed",
choices=breed_choices,
value=breed_choices[0][1] if breed_choices else None,
info="Select a breed to view its characteristics radar chart"
)
with gr.Accordion("User Preferences (Affects Scoring)", open=False):
living_space = gr.Radio(
label="Living Space",
choices=["apartment", "house_small", "house_large"],
value="apartment",
info="Your residential environment type"
)
yard_access = gr.Radio(
label="Yard Condition",
choices=["no_yard", "shared_yard", "private_yard"],
value="no_yard",
info="Whether you have yard space"
)
exercise_time = gr.Slider(
label="Daily Exercise Time (minutes)",
minimum=15,
maximum=180,
value=60,
step=15,
info="Daily exercise time you can provide"
)
exercise_type = gr.Radio(
label="Exercise Type",
choices=["light_walks", "moderate_activity", "active_training"],
value="moderate_activity",
info="Your preferred exercise method"
)
grooming_commitment = gr.Radio(
label="Grooming Commitment",
choices=["low", "medium", "high"],
value="medium",
info="Level of grooming care you're willing to provide"
)
experience_level = gr.Radio(
label="Experience Level",
choices=["beginner", "intermediate", "advanced"],
value="beginner",
info="Your level of dog owning experience"
)
noise_tolerance = gr.Radio(
label="Noise Tolerance",
choices=["low", "medium", "high"],
value="medium",
info="Your acceptance level of dog barking"
)
has_children = gr.Checkbox(
label="Have Children",
value=False,
info="Whether you have children at home"
)
children_age = gr.Radio(
label="Children's Age",
choices=["toddler", "school_age", "teenager"],
value="school_age",
visible=False,
info="Age group of children at home"
)
climate = gr.Radio(
label="Climate Environment",
choices=["cold", "moderate", "hot"],
value="moderate",
info="Climate characteristics of your living area"
)
# Listen for has_children changes to control children_age display
has_children.change(
fn=lambda x: gr.update(visible=x),
inputs=has_children,
outputs=children_age
)
# Add function to update shared preferences
def update_shared_preferences(*args):
return {
"living_space": args[0],
"yard_access": args[1],
"exercise_time": args[2],
"exercise_type": args[3],
"grooming_commitment": args[4],
"experience_level": args[5],
"noise_tolerance": args[6],
"has_children": args[7],
"children_age": args[8],
"climate": args[9]
}
# Monitor preference changes and update shared state
all_preferences = [living_space, yard_access, exercise_time,
exercise_type, grooming_commitment, experience_level,
noise_tolerance, has_children, children_age, climate]
for pref in all_preferences:
pref.change(
update_shared_preferences,
inputs=all_preferences,
outputs=shared_preferences
)
generate_btn = gr.Button("Generate Radar Chart", variant="primary")
with gr.Column(scale=2):
# Right display area
radar_plot = gr.Plot(label="Breed Characteristics Radar Chart")
breed_details = gr.JSON(label="Breed Detailed Information")
# Button click event
generate_btn.click(
fn=lambda *args: generate_radar_chart(
args[0], create_user_preferences(*args[1:]),
get_dog_description, calculate_compatibility_score
),
inputs=[breed_dropdown, living_space, yard_access, exercise_time,
exercise_type, grooming_commitment, experience_level,
noise_tolerance, has_children, children_age, climate],
outputs=[radar_plot, breed_details]
)
# Breed comparison analysis tab - Improved version
with gr.TabItem("Breed Comparison Analysis"):
with gr.Row():
breed1_dropdown = gr.Dropdown(
label="Select First Breed",
choices=breed_choices,
value=breed_choices[0][1] if breed_choices else None
)
breed2_dropdown = gr.Dropdown(
label="Select Second Breed",
choices=breed_choices,
value=breed_choices[1][1] if len(breed_choices) > 1 else None
)
with gr.Row():
use_shared_settings = gr.Checkbox(
label="Use Radar Chart Analysis Settings",
value=True,
info="Check to use the same preferences from the Radar Chart Analysis tab"
)
# Custom settings container - only visible when not using shared settings
with gr.Column(visible=False) as custom_settings:
with gr.Accordion("Custom Preferences", open=True):
comp_living_space = gr.Radio(
label="Living Space",
choices=["apartment", "house_small", "house_large"],
value="apartment"
)
comp_yard_access = gr.Radio(
label="Yard Condition",
choices=["no_yard", "shared_yard", "private_yard"],
value="no_yard"
)
comp_exercise_time = gr.Slider(
label="Daily Exercise Time (minutes)",
minimum=15,
maximum=180,
value=60,
step=15
)
comp_exercise_type = gr.Radio(
label="Exercise Type",
choices=["light_walks", "moderate_activity", "active_training"],
value="moderate_activity"
)
# Toggle custom settings visibility based on checkbox
use_shared_settings.change(
fn=lambda x: gr.update(visible=not x),
inputs=use_shared_settings,
outputs=custom_settings
)
compare_btn = gr.Button("Compare Breeds", variant="primary")
comparison_plot = gr.Plot(label="Breed Characteristics Comparison")
# Improved comparison function that handles both shared and custom settings
def get_comparison_settings(use_shared, shared_prefs, *custom_prefs):
"""
Select appropriate settings based on user choice
Args:
use_shared: Boolean indicating whether to use shared settings
shared_prefs: Dictionary of shared preferences
custom_prefs: Custom preference values if not using shared
Returns:
UserPreferences object with the selected settings
"""
if use_shared:
# Use settings from Radar Chart tab
return create_user_preferences_from_dict(shared_prefs)
else:
# Use custom settings from Comparison tab
return create_user_preferences(
custom_prefs[0], custom_prefs[1], custom_prefs[2], custom_prefs[3],
"medium", "beginner", "medium", False, "school_age", "moderate"
)
# Connect the comparison button
compare_btn.click(
fn=lambda breed1, breed2, use_shared, shared_prefs, *custom_prefs: generate_comparison_chart(
breed1, breed2,
get_comparison_settings(use_shared, shared_prefs, *custom_prefs),
get_dog_description, calculate_compatibility_score
),
inputs=[
breed1_dropdown, breed2_dropdown,
use_shared_settings, shared_preferences,
comp_living_space, comp_yard_access,
comp_exercise_time, comp_exercise_type
],
outputs=comparison_plot
)
return None
def create_user_preferences(living_space, yard_access, exercise_time, exercise_type,
grooming_commitment, experience_level, noise_tolerance,
has_children, children_age, climate):
"""
Create UserPreferences object from UI inputs
Args:
living_space: Type of living environment
yard_access: Yard availability
exercise_time: Minutes of daily exercise
exercise_type: Type of exercise activity
grooming_commitment: Level of grooming commitment
experience_level: Dog owner experience level
noise_tolerance: Tolerance for barking
has_children: Whether there are children in the home
children_age: Age group of children
climate: Climate type of the living area
Returns:
UserPreferences object with the specified settings
"""
return UserPreferences(
living_space=living_space,
yard_access=yard_access,
exercise_time=exercise_time,
exercise_type=exercise_type,
grooming_commitment=grooming_commitment,
experience_level=experience_level,
time_availability="moderate", # Default value
has_children=has_children,
children_age=children_age if has_children else "school_age",
noise_tolerance=noise_tolerance,
space_for_play=True, # Default value
other_pets=False, # Default value
climate=climate
)
def create_user_preferences_from_dict(prefs_dict):
"""
Create UserPreferences object from a dictionary
Args:
prefs_dict: Dictionary containing preference values
Returns:
UserPreferences object populated with the dictionary values
"""
return UserPreferences(
living_space=prefs_dict["living_space"],
yard_access=prefs_dict["yard_access"],
exercise_time=prefs_dict["exercise_time"],
exercise_type=prefs_dict["exercise_type"],
grooming_commitment=prefs_dict["grooming_commitment"],
experience_level=prefs_dict["experience_level"],
time_availability="moderate", # Default value
has_children=prefs_dict["has_children"],
children_age=prefs_dict["children_age"],
noise_tolerance=prefs_dict["noise_tolerance"],
space_for_play=True, # Default value
other_pets=False, # Default value
climate=prefs_dict["climate"]
)
def generate_radar_chart(breed_name, user_prefs, get_dog_description, calculate_compatibility_score):
"""
Generate radar chart for a single breed
Args:
breed_name: Dog breed name
user_prefs: UserPreferences object
get_dog_description: Function to get breed description
calculate_compatibility_score: Function to calculate compatibility score
Returns:
tuple: (matplotlib figure, breed description dict)
"""
try:
# Get breed description
breed_info = get_dog_description(breed_name)
if not breed_info:
# Create empty figure with error message
fig = Figure(figsize=(8, 8))
ax = fig.add_subplot(111)
ax.text(0.5, 0.5, f"No information found for breed: {breed_name}",
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14)
ax.axis('off')
return fig, {"error": f"No information found for breed: {breed_name}"}
# Calculate compatibility scores
scores = calculate_compatibility_score(breed_info, user_prefs)
# Prepare data for radar chart
categories = ['Space Compatibility', 'Exercise Needs', 'Grooming',
'Experience Required', 'Health', 'Noise Level']
values = [scores['space'], scores['exercise'], scores['grooming'],
scores['experience'], scores['health'], scores['noise']]
# Close the polygon by appending first value
values_closed = values + [values[0]]
categories_closed = categories + [categories[0]]
# Calculate angles for each category
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
angles += angles[:1] # Close the loop
# Create figure and polar axis
fig = Figure(figsize=(10, 8))
ax = fig.add_subplot(111, polar=True)
# Plot data
ax.fill(angles, values_closed, color='skyblue', alpha=0.25)
ax.plot(angles, values_closed, color='blue', linewidth=2)
# Add category labels
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, fontsize=12)
# Configure y-axis
ax.set_yticks([0.2, 0.4, 0.6, 0.8, 1.0])
ax.set_yticklabels(['0.2', '0.4', '0.6', '0.8', '1.0'], fontsize=10)
ax.set_ylim(0, 1)
# Add a title
breed_display_name = breed_name.replace('_', ' ')
ax.set_title(f"{breed_display_name} Characteristic Scores", fontsize=16, pad=20)
# Add value labels at each point
for i, (angle, value) in enumerate(zip(angles[:-1], values)):
ax.text(angle, value + 0.05, f"{value:.2f}",
ha='center', va='center', fontsize=10,
bbox=dict(facecolor='white', alpha=0.7, boxstyle="round,pad=0.3"))
# Add grid
ax.grid(True, linestyle='--', alpha=0.7)
# Add overall score text
overall_score = scores.get('overall', 0)
fig.text(0.5, 0.02, f"Overall Match Score: {overall_score:.2f}",
ha='center', fontsize=14,
bbox=dict(facecolor='lightgreen', alpha=0.3, boxstyle="round,pad=0.5"))
# Enhance aesthetics
fig.patch.set_facecolor('#f8f9fa')
ax.set_facecolor('#f0f0f0')
# Print debug information
print(f"Generated radar chart for {breed_name}")
print(f"Scores: {scores}")
return fig, breed_info
except Exception as e:
# Create empty figure with error message
fig = Figure(figsize=(8, 8))
ax = fig.add_subplot(111)
ax.text(0.5, 0.5, f"Error generating chart: {str(e)}",
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14)
ax.axis('off')
print(f"Error in generate_radar_chart: {str(e)}")
return fig, {"error": f"Error generating chart: {str(e)}"}
def generate_comparison_chart(breed1, breed2, user_prefs, get_dog_description, calculate_compatibility_score):
"""
Generate comparison chart for two breeds
Args:
breed1, breed2: Dog breed names
user_prefs: UserPreferences object
get_dog_description: Function to get breed description
calculate_compatibility_score: Function to calculate compatibility score
Returns:
matplotlib figure: Comparison chart
"""
try:
# Get breed descriptions
breed1_info = get_dog_description(breed1)
breed2_info = get_dog_description(breed2)
if not breed1_info or not breed2_info:
# Create empty figure with error message
fig = Figure(figsize=(10, 6))
ax = fig.add_subplot(111)
ax.text(0.5, 0.5, f"Missing breed information. Please check both breeds.",
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14)
ax.axis('off')
return fig
# Calculate compatibility scores
scores1 = calculate_compatibility_score(breed1_info, user_prefs)
scores2 = calculate_compatibility_score(breed2_info, user_prefs)
# Prepare data for bar chart
categories = ['Space Compatibility', 'Exercise Needs', 'Grooming',
'Experience Required', 'Health', 'Noise Level']
values1 = [scores1['space'], scores1['exercise'], scores1['grooming'],
scores1['experience'], scores1['health'], scores1['noise']]
values2 = [scores2['space'], scores2['exercise'], scores2['grooming'],
scores2['experience'], scores2['health'], scores2['noise']]
# Create figure
fig = Figure(figsize=(12, 7))
ax = fig.add_subplot(111)
# Set width of bars
x = np.arange(len(categories))
width = 0.35
# Plot bars
breed1_display = breed1.replace('_', ' ')
breed2_display = breed2.replace('_', ' ')
rects1 = ax.bar(x - width/2, values1, width, label=breed1_display, color='#4299e1')
rects2 = ax.bar(x + width/2, values2, width, label=breed2_display, color='#f56565')
# Add labels and title
ax.set_xlabel('Scoring Dimensions', fontsize=12)
ax.set_ylabel('Score (0-1)', fontsize=12)
ax.set_title(f'{breed1_display} vs {breed2_display} Breed Comparison', fontsize=15)
ax.set_xticks(x)
ax.set_xticklabels(categories, rotation=30, ha='right')
ax.legend(loc='upper right')
# Add value labels on top of bars
def add_labels(rects):
for rect in rects:
height = rect.get_height()
ax.annotate(f'{height:.2f}',
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom',
fontsize=9, fontweight='bold')
add_labels(rects1)
add_labels(rects2)
# Set y-axis limit
ax.set_ylim(0, 1.1)
# Add grid
ax.grid(True, linestyle='--', alpha=0.3, axis='y')
# Add overall score comparison
overall1 = scores1.get('overall', 0)
overall2 = scores2.get('overall', 0)
fig.text(0.5, 0.02,
f"Overall Match Scores: {breed1_display}: {overall1:.2f} | {breed2_display}: {overall2:.2f}",
ha='center', fontsize=13,
bbox=dict(facecolor='#edf2f7', alpha=0.7, boxstyle="round,pad=0.5"))
# Enhance aesthetics
fig.patch.set_facecolor('#f8f9fa')
ax.set_facecolor('#f0f0f0')
# Add a tight layout to ensure everything fits
fig.tight_layout(rect=[0, 0.05, 1, 0.95])
# Print debug information
print(f"Generated comparison chart for {breed1} vs {breed2}")
return fig
except Exception as e:
# Create empty figure with error message
fig = Figure(figsize=(10, 6))
ax = fig.add_subplot(111)
ax.text(0.5, 0.5, f"Error generating comparison: {str(e)}",
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14)
ax.axis('off')
print(f"Error in generate_comparison_chart: {str(e)}")
return fig