Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -41,6 +41,31 @@ from ultralytics import YOLO
|
|
41 |
import asyncio
|
42 |
import traceback
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
history_manager = UserHistoryManager()
|
45 |
|
46 |
class ModelManager:
|
@@ -70,28 +95,42 @@ class ModelManager:
|
|
70 |
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
71 |
return self._device
|
72 |
|
73 |
-
@property
|
74 |
-
def yolo_model(self):
|
75 |
-
if self._yolo_model is None:
|
76 |
-
self._yolo_model = YOLO('yolov8x.pt')
|
77 |
-
return self._yolo_model
|
78 |
-
|
79 |
# @property
|
80 |
# def yolo_model(self):
|
81 |
# if self._yolo_model is None:
|
82 |
# self._yolo_model = YOLO('yolov8x.pt')
|
83 |
-
|
84 |
-
# if hasattr(self._yolo_model, 'model') and hasattr(self._yolo_model.model, 'fuse'):
|
85 |
-
# print("avoid CUDA error")
|
86 |
-
|
87 |
-
# def no_fuse(*args, **kwargs):
|
88 |
-
# print("skip the fuse step")
|
89 |
-
# return self._yolo_model.model
|
90 |
-
|
91 |
-
# self._yolo_model.model.fuse = no_fuse
|
92 |
-
|
93 |
# return self._yolo_model
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
@property
|
96 |
def breed_model(self):
|
97 |
if self._breed_model is None:
|
|
|
41 |
import asyncio
|
42 |
import traceback
|
43 |
|
44 |
+
def setup_environment():
|
45 |
+
"""配置適合 ZeroGPU 環境的設置"""
|
46 |
+
# 啟用 CUDA 錯誤的同步報告,幫助診斷問題
|
47 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
48 |
+
|
49 |
+
# 檢查 CUDA 是否可用
|
50 |
+
if torch.cuda.is_available():
|
51 |
+
# 顯示 GPU 信息
|
52 |
+
device_name = torch.cuda.get_device_name(0)
|
53 |
+
print(f"使用 GPU: {device_name}")
|
54 |
+
|
55 |
+
# 針對 A100 的優化設置
|
56 |
+
if "A100" in device_name:
|
57 |
+
print("檢測到 A100 GPU,應用特殊優化...")
|
58 |
+
torch.backends.cudnn.benchmark = True
|
59 |
+
|
60 |
+
# 清理 GPU 內存
|
61 |
+
torch.cuda.empty_cache()
|
62 |
+
return True
|
63 |
+
else:
|
64 |
+
print("CUDA 不可用,使用 CPU 模式")
|
65 |
+
return False
|
66 |
+
|
67 |
+
cuda_available = setup_environment()
|
68 |
+
|
69 |
history_manager = UserHistoryManager()
|
70 |
|
71 |
class ModelManager:
|
|
|
95 |
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
96 |
return self._device
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
# @property
|
99 |
# def yolo_model(self):
|
100 |
# if self._yolo_model is None:
|
101 |
# self._yolo_model = YOLO('yolov8x.pt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
# return self._yolo_model
|
103 |
|
104 |
+
@property
|
105 |
+
def yolo_model(self):
|
106 |
+
if self._yolo_model is None:
|
107 |
+
try:
|
108 |
+
print("正在加載 YOLO 模型...")
|
109 |
+
# 不指定設備,讓 YOLO 自動選擇
|
110 |
+
self._yolo_model = YOLO('yolov8x.pt')
|
111 |
+
|
112 |
+
# 禁用模型融合來避免 CUDA 錯誤
|
113 |
+
if hasattr(self._yolo_model, 'model') and hasattr(self._yolo_model.model, 'fuse'):
|
114 |
+
print("在 ZeroGPU 環境下禁用模型融合以避免 CUDA 錯誤")
|
115 |
+
|
116 |
+
# 備份原始融合方法
|
117 |
+
original_fuse = self._yolo_model.model.fuse
|
118 |
+
|
119 |
+
# 創建一個空的融合方法
|
120 |
+
def no_fuse(*args, **kwargs):
|
121 |
+
print("已跳過融合操作")
|
122 |
+
return self._yolo_model.model
|
123 |
+
|
124 |
+
# 替換融合方法
|
125 |
+
self._yolo_model.model.fuse = no_fuse
|
126 |
+
except Exception as e:
|
127 |
+
print(f"加載 YOLO 模型時出錯: {str(e)}")
|
128 |
+
print("嘗試降級到較小的模型和 CPU 模式...")
|
129 |
+
# 降級到較小的模型並明確使用 CPU
|
130 |
+
self._yolo_model = YOLO('yolov8n.pt', device='cpu')
|
131 |
+
|
132 |
+
return self._yolo_model
|
133 |
+
|
134 |
@property
|
135 |
def breed_model(self):
|
136 |
if self._breed_model is None:
|