Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -41,31 +41,6 @@ from ultralytics import YOLO
|
|
41 |
import asyncio
|
42 |
import traceback
|
43 |
|
44 |
-
# def setup_environment():
|
45 |
-
# """配置適合 ZeroGPU 環境的設置"""
|
46 |
-
# # 啟用 CUDA 錯誤的同步報告,幫助診斷問題
|
47 |
-
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
48 |
-
|
49 |
-
# # 檢查 CUDA 是否可用
|
50 |
-
# if torch.cuda.is_available():
|
51 |
-
# # 顯示 GPU 信息
|
52 |
-
# device_name = torch.cuda.get_device_name(0)
|
53 |
-
# print(f"使用 GPU: {device_name}")
|
54 |
-
|
55 |
-
# # 針對 A100 的優化設置
|
56 |
-
# if "A100" in device_name:
|
57 |
-
# print("檢測到 A100 GPU,應用特殊優化...")
|
58 |
-
# torch.backends.cudnn.benchmark = True
|
59 |
-
|
60 |
-
# # 清理 GPU 內存
|
61 |
-
# torch.cuda.empty_cache()
|
62 |
-
# return True
|
63 |
-
# else:
|
64 |
-
# print("CUDA 不可用,使用 CPU 模式")
|
65 |
-
# return False
|
66 |
-
|
67 |
-
# cuda_available = setup_environment()
|
68 |
-
|
69 |
history_manager = UserHistoryManager()
|
70 |
|
71 |
class ModelManager:
|
@@ -101,36 +76,6 @@ class ModelManager:
|
|
101 |
self._yolo_model = YOLO('yolov8x.pt')
|
102 |
return self._yolo_model
|
103 |
|
104 |
-
# @property
|
105 |
-
# def yolo_model(self):
|
106 |
-
# if self._yolo_model is None:
|
107 |
-
# try:
|
108 |
-
# print("正在加載 YOLO 模型...")
|
109 |
-
# # 不指定設備,讓 YOLO 自動選擇
|
110 |
-
# self._yolo_model = YOLO('yolov8x.pt')
|
111 |
-
|
112 |
-
# # 禁用模型融合來避免 CUDA 錯誤
|
113 |
-
# if hasattr(self._yolo_model, 'model') and hasattr(self._yolo_model.model, 'fuse'):
|
114 |
-
# print("在 ZeroGPU 環境下禁用模型融合以避免 CUDA 錯誤")
|
115 |
-
|
116 |
-
# # 備份原始融合方法
|
117 |
-
# original_fuse = self._yolo_model.model.fuse
|
118 |
-
|
119 |
-
# # 創建一個空的融合方法
|
120 |
-
# def no_fuse(*args, **kwargs):
|
121 |
-
# print("已跳過融合操作")
|
122 |
-
# return self._yolo_model.model
|
123 |
-
|
124 |
-
# # 替換融合方法
|
125 |
-
# self._yolo_model.model.fuse = no_fuse
|
126 |
-
# except Exception as e:
|
127 |
-
# print(f"加載 YOLO 模型時出錯: {str(e)}")
|
128 |
-
# print("嘗試降級到較小的模型和 CPU 模式...")
|
129 |
-
# # 降級到較小的模型並明確使用 CPU
|
130 |
-
# self._yolo_model = YOLO('yolov8n.pt', device='cpu')
|
131 |
-
|
132 |
-
# return self._yolo_model
|
133 |
-
|
134 |
@property
|
135 |
def breed_model(self):
|
136 |
if self._breed_model is None:
|
@@ -252,7 +197,7 @@ def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
|
|
252 |
})
|
253 |
|
254 |
if not detected_boxes:
|
255 |
-
return [(image, 1
|
256 |
|
257 |
# Phase 2: Analysis of detection relationships
|
258 |
avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
|
@@ -266,7 +211,7 @@ def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
|
|
266 |
y2 = min(box1['coords'][3], box2['coords'][3])
|
267 |
|
268 |
if x2 <= x1 or y2 <= y1:
|
269 |
-
return 0
|
270 |
|
271 |
intersection = (x2 - x1) * (y2 - y1)
|
272 |
area1 = box1['area']
|
@@ -604,4 +549,4 @@ def main():
|
|
604 |
|
605 |
if __name__ == "__main__":
|
606 |
iface = main()
|
607 |
-
iface.launch()
|
|
|
41 |
import asyncio
|
42 |
import traceback
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
history_manager = UserHistoryManager()
|
45 |
|
46 |
class ModelManager:
|
|
|
76 |
self._yolo_model = YOLO('yolov8x.pt')
|
77 |
return self._yolo_model
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
@property
|
80 |
def breed_model(self):
|
81 |
if self._breed_model is None:
|
|
|
197 |
})
|
198 |
|
199 |
if not detected_boxes:
|
200 |
+
return [(image, 1, [0, 0, img_width, img_height], False)]
|
201 |
|
202 |
# Phase 2: Analysis of detection relationships
|
203 |
avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
|
|
|
211 |
y2 = min(box1['coords'][3], box2['coords'][3])
|
212 |
|
213 |
if x2 <= x1 or y2 <= y1:
|
214 |
+
return 0
|
215 |
|
216 |
intersection = (x2 - x1) * (y2 - y1)
|
217 |
area1 = box1['area']
|
|
|
549 |
|
550 |
if __name__ == "__main__":
|
551 |
iface = main()
|
552 |
+
iface.launch()
|