Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -167,7 +167,7 @@ async def predict_single_dog(image):
|
|
167 |
return top1_prob, topk_breeds, topk_probs_percent
|
168 |
|
169 |
|
170 |
-
async def detect_multiple_dogs(image, conf_threshold=0.
|
171 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
172 |
dogs = []
|
173 |
boxes = []
|
@@ -195,56 +195,6 @@ async def detect_multiple_dogs(image, conf_threshold=0.4, iou_threshold=0.55):
|
|
195 |
return dogs
|
196 |
|
197 |
|
198 |
-
# async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
|
199 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
200 |
-
# dogs = []
|
201 |
-
# boxes = []
|
202 |
-
|
203 |
-
# for box in results.boxes:
|
204 |
-
# if box.cls == 16: # COCO dataset class for dog is 16
|
205 |
-
# xyxy = box.xyxy[0].tolist()
|
206 |
-
# confidence = box.conf.item()
|
207 |
-
# boxes.append((xyxy, confidence))
|
208 |
-
|
209 |
-
# if not boxes:
|
210 |
-
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
211 |
-
# else:
|
212 |
-
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
213 |
-
|
214 |
-
# for box, confidence in nms_boxes:
|
215 |
-
# x1, y1, x2, y2 = [int(coord) for coord in box]
|
216 |
-
# cropped_image = image.crop((x1, y1, x2, y2))
|
217 |
-
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
218 |
-
|
219 |
-
# # 應用過濾器來移除可能的錯誤檢測
|
220 |
-
# dogs = filter_detections(dogs, (image.width, image.height))
|
221 |
-
|
222 |
-
# return dogs
|
223 |
-
|
224 |
-
# def filter_detections(dogs, image_size):
|
225 |
-
# filtered_dogs = []
|
226 |
-
# image_area = image_size[0] * image_size[1]
|
227 |
-
# num_dogs = len(dogs)
|
228 |
-
|
229 |
-
# # 根據檢測到的狗的數量動態調整閾值
|
230 |
-
# if num_dogs > 5:
|
231 |
-
# min_ratio, max_ratio = 0.003, 0.5
|
232 |
-
# elif num_dogs > 2:
|
233 |
-
# min_ratio, max_ratio = 0.005, 0.6
|
234 |
-
# else:
|
235 |
-
# min_ratio, max_ratio = 0.01, 0.7
|
236 |
-
|
237 |
-
# for dog in dogs:
|
238 |
-
# _, confidence, box = dog
|
239 |
-
# dog_area = (box[2] - box[0]) * (box[3] - box[1])
|
240 |
-
# area_ratio = dog_area / image_area
|
241 |
-
|
242 |
-
# if min_ratio < area_ratio < max_ratio:
|
243 |
-
# filtered_dogs.append(dog)
|
244 |
-
|
245 |
-
# return filtered_dogs
|
246 |
-
|
247 |
-
|
248 |
def non_max_suppression(boxes, iou_threshold):
|
249 |
keep = []
|
250 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
@@ -385,7 +335,6 @@ async def predict(image):
|
|
385 |
return error_msg, None, gr.update(visible=False, choices=[]), None
|
386 |
|
387 |
|
388 |
-
|
389 |
def show_details(choice, previous_output, initial_state):
|
390 |
if not choice:
|
391 |
return previous_output, gr.update(visible=True), initial_state
|
|
|
167 |
return top1_prob, topk_breeds, topk_probs_percent
|
168 |
|
169 |
|
170 |
+
async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
|
171 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
172 |
dogs = []
|
173 |
boxes = []
|
|
|
195 |
return dogs
|
196 |
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
def non_max_suppression(boxes, iou_threshold):
|
199 |
keep = []
|
200 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
|
|
335 |
return error_msg, None, gr.update(visible=False, choices=[]), None
|
336 |
|
337 |
|
|
|
338 |
def show_details(choice, previous_output, initial_state):
|
339 |
if not choice:
|
340 |
return previous_output, gr.update(visible=True), initial_state
|