File size: 114,553 Bytes
3172319
 
 
4d1f920
3172319
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
 
 
 
4d1f920
 
 
 
 
 
 
 
 
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
 
4d1f920
3172319
 
 
 
 
4d1f920
3172319
 
 
 
 
 
 
 
 
 
 
 
 
c0fe80d
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
4d1f920
 
 
 
 
 
 
3172319
4d1f920
3172319
 
4d1f920
 
 
 
 
 
3172319
 
4d1f920
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
3172319
4d1f920
 
 
 
3172319
4d1f920
 
 
3172319
4d1f920
 
 
3172319
4d1f920
 
 
3172319
4d1f920
 
 
c0fe80d
4d1f920
 
 
 
 
c0fe80d
4d1f920
 
3172319
4d1f920
 
3172319
4d1f920
 
 
 
 
 
 
c0fe80d
4d1f920
3172319
4d1f920
3172319
 
 
 
4d1f920
3172319
4d1f920
3172319
 
 
4d1f920
c0fe80d
 
4d1f920
c0fe80d
 
 
 
 
4d1f920
3172319
4d1f920
3172319
 
c0fe80d
 
3172319
4d1f920
3172319
 
 
c0fe80d
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
e83cc4c
4d1f920
 
 
 
3172319
4d1f920
 
3172319
4d1f920
 
 
c0fe80d
4d1f920
 
 
e83cc4c
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
4d1f920
e83cc4c
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
c0fe80d
 
 
 
e83cc4c
c0fe80d
 
 
e83cc4c
c0fe80d
 
 
 
 
 
e83cc4c
c0fe80d
 
 
e83cc4c
c0fe80d
 
e83cc4c
c0fe80d
 
 
e83cc4c
c0fe80d
 
 
 
e83cc4c
4d1f920
 
 
 
c0fe80d
 
 
 
 
 
4d1f920
c0fe80d
 
 
 
 
 
 
e83cc4c
c0fe80d
4d1f920
c0fe80d
 
 
 
 
 
e83cc4c
c0fe80d
 
 
 
 
 
e83cc4c
c0fe80d
 
 
e83cc4c
c0fe80d
 
 
 
 
 
 
e83cc4c
c0fe80d
e83cc4c
c0fe80d
e83cc4c
c0fe80d
 
 
e83cc4c
c0fe80d
e83cc4c
c0fe80d
e83cc4c
c0fe80d
 
 
e83cc4c
c0fe80d
 
 
e83cc4c
c0fe80d
 
4d1f920
c0fe80d
 
 
 
 
4d1f920
c0fe80d
e83cc4c
4d1f920
 
e83cc4c
4d1f920
 
 
e83cc4c
4d1f920
 
 
e83cc4c
4d1f920
 
e83cc4c
4d1f920
 
 
 
c0fe80d
4d1f920
c0fe80d
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
4d1f920
 
e83cc4c
4d1f920
 
 
e83cc4c
4d1f920
 
e83cc4c
4d1f920
c0fe80d
3172319
 
 
 
 
 
c0fe80d
3172319
 
 
c0fe80d
3172319
 
 
c0fe80d
3172319
 
 
c0fe80d
3172319
 
 
c0fe80d
3172319
 
 
c0fe80d
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
3172319
 
4d1f920
3172319
 
4d1f920
 
 
 
 
 
 
 
3172319
 
4d1f920
3172319
 
 
 
4d1f920
 
 
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
 
 
 
 
4d1f920
 
 
3172319
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
3172319
4d1f920
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
 
 
4d1f920
3172319
 
 
4d1f920
3172319
 
 
 
 
4d1f920
3172319
 
 
 
4d1f920
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fe80d
3172319
 
 
c0fe80d
3172319
 
c0fe80d
3172319
 
 
 
c0fe80d
3172319
 
 
 
 
 
c0fe80d
3172319
 
 
 
 
 
 
 
c0fe80d
3172319
 
 
 
 
 
 
c0fe80d
3172319
 
c0fe80d
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
4d1f920
3172319
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
 
 
 
 
 
 
 
 
 
c0fe80d
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
import os
import re
import json
import logging
import random
import numpy as np
from typing import Dict, List, Tuple, Any, Optional

from scene_type import SCENE_TYPES
from scene_detail_templates import SCENE_DETAIL_TEMPLATES
from object_template_fillers import OBJECT_TEMPLATE_FILLERS
from lighting_conditions import LIGHTING_CONDITIONS
from viewpoint_templates import VIEWPOINT_TEMPLATES
from cultural_templates import CULTURAL_TEMPLATES
from confifence_templates import CONFIDENCE_TEMPLATES
from landmark_data import ALL_LANDMARKS

class EnhancedSceneDescriber:
    """
    Enhanced scene description generator with improved template handling,
    viewpoint awareness, and cultural context recognition.
    Provides detailed natural language descriptions of scenes based on
    detection results and scene classification.
    """

    def __init__(self, templates_db: Optional[Dict] = None, scene_types: Optional[Dict] = None, spatial_analyzer_instance: Optional[Any] = None):
        """
        Initialize the enhanced scene describer.

        Args:
            templates_db: Optional custom templates database
            scene_types: Dictionary of scene type definitions
        """
        self.logger = logging.getLogger(self.__class__.__name__) # Use class name for logger
        self.logger.setLevel(logging.INFO) # Or your desired logging level
        # Optional: Add a handler if not configured globally
        if not self.logger.hasHandlers():
            handler = logging.StreamHandler()
            formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
            handler.setFormatter(formatter)
            self.logger.addHandler(handler)

        # Load or use provided scene types
        self.scene_types = scene_types or self._load_default_scene_types()

        # Load templates database
        self.templates = templates_db or self._load_templates()

        # Initialize viewpoint detection parameters
        self._initialize_viewpoint_parameters()

    def _load_default_scene_types(self) -> Dict:
        """
        Load default scene types.

        Returns:
            Dict: Scene type definitions
        """

        return SCENE_TYPES

    def _load_templates(self) -> Dict:
        """
        Load description templates from imported Python modules.

        Returns:
            Dict: Template collections for different description components
        """
        templates = {}

        # 載入事先準備的模板
        templates["scene_detail_templates"] = SCENE_DETAIL_TEMPLATES
        templates["object_template_fillers"] = OBJECT_TEMPLATE_FILLERS
        templates["viewpoint_templates"] = VIEWPOINT_TEMPLATES
        templates["cultural_templates"] = CULTURAL_TEMPLATES

        # 從 LIGHTING_CONDITIONS 獲取照明模板
        templates["lighting_templates"] = {
            key: data["general"] for key, data in LIGHTING_CONDITIONS.get("time_descriptions", {}).items()
        }

        # 設置默認的置信度模板
        templates["confidence_templates"] = {
            "high": "{description} {details}",
            "medium": "This appears to be {description} {details}",
            "low": "This might be {description}, but the confidence is low. {details}"
        }

        # 初始化其他必要的模板(現在這個函數簡化了很多)
        self._initialize_default_templates(templates)

        return templates

    def _initialize_default_templates(self, templates: Dict):
        """
        檢查模板字典並填充任何缺失的默認模板。

        在將模板移至專門的模組後,此方法主要作為安全機制,
        確保即使導入失敗或某些模板未在外部定義,系統仍能正常運行。

        Args:
            templates: 要檢查和更新的模板字典
        """
        # 檢查關鍵模板類型是否存在,如果不存在則添加默認值

        # 置信度模板 - 用於控制描述的語氣
        if "confidence_templates" not in templates:
            templates["confidence_templates"] = {
                "high": "{description} {details}",
                "medium": "This appears to be {description} {details}",
                "low": "This might be {description}, but the confidence is low. {details}"
            }

        # 場景細節模板
        if "scene_detail_templates" not in templates:
            templates["scene_detail_templates"] = {
                "default": ["A space with various objects."]
            }

        # 物體填充模板,用於生成物體描述
        if "object_template_fillers" not in templates:
            templates["object_template_fillers"] = {
                "default": ["various items"]
            }

        # 視角模板,雖然現在從專門模組導入,但可作為備份
        if "viewpoint_templates" not in templates:
            # 使用簡化版的默認視角模板
            templates["viewpoint_templates"] = {
                "eye_level": {
                    "prefix": "From eye level, ",
                    "observation": "the scene is viewed straight on."
                },
                "aerial": {
                    "prefix": "From above, ",
                    "observation": "the scene is viewed from a bird's-eye perspective."
                }
            }

        # 文化模板
        if "cultural_templates" not in templates:
            templates["cultural_templates"] = {
                "asian": {
                    "elements": ["cultural elements"],
                    "description": "The scene has Asian characteristics."
                },
                "european": {
                    "elements": ["architectural features"],
                    "description": "The scene has European characteristics."
                }
            }

        # 照明模板 - 用於描述光照條件
        if "lighting_templates" not in templates:
            templates["lighting_templates"] = {
                "day_clear": "The scene is captured during daylight.",
                "night": "The scene is captured at night.",
                "unknown": "The lighting conditions are not easily determined."
            }


    def _initialize_viewpoint_parameters(self):
        """
        Initialize parameters used for viewpoint detection.
        """
        self.viewpoint_params = {
            # Parameters for detecting aerial views
            "aerial_threshold": 0.7,  # High object density viewed from top
            "aerial_size_variance_threshold": 0.15,  # Low size variance in aerial views

            # Parameters for detecting low angle views
            "low_angle_threshold": 0.3,  # Bottom-heavy object distribution
            "vertical_size_ratio_threshold": 1.8,  # Vertical objects appear taller

            # Parameters for detecting elevated views
            "elevated_threshold": 0.6,  # Objects mostly in middle/bottom
            "elevated_top_threshold": 0.3  # Few objects at top of frame
        }

    def _generate_landmark_description(self,
                                 scene_type: str,
                                 detected_objects: List[Dict],
                                 confidence: float,
                                 lighting_info: Optional[Dict] = None,
                                 functional_zones: Optional[Dict] = None,
                                 landmark_objects: Optional[List[Dict]] = None) -> str:
        """
        生成包含地標信息的場景描述

        Args:
            scene_type: 識別的場景類型
            detected_objects: 檢測到的物體列表
            confidence: 場景分類置信度
            lighting_info: 照明條件信息(可選)
            functional_zones: 功能區域信息(可選)
            landmark_objects: 識別為地標的物體列表(可選)

        Returns:
            str: 包含地標信息的自然語言場景描述
        """
        # 如果沒有提供地標物體,則從檢測物體中篩選
        if landmark_objects is None:
            landmark_objects = [obj for obj in detected_objects if obj.get("is_landmark", False)]

        # 如果沒有地標,退回到標準描述
        if not landmark_objects:
            if scene_type in ["tourist_landmark", "natural_landmark", "historical_monument"]:
                # 場景類型是地標但沒有具體地標物體
                base_description = "A scenic area that appears to be a tourist destination, though specific landmarks are not clearly identifiable."
            else:
                # 使用標準方法生成基本描述
                return self._format_final_description(self._generate_scene_details(
                    scene_type,
                    detected_objects,
                    lighting_info,
                    self._detect_viewpoint(detected_objects)
                ))
        else:
            # 獲取主要地標(信心度最高的)
            primary_landmark = max(landmark_objects, key=lambda x: x.get("confidence", 0))
            landmark_name = primary_landmark.get("class_name", "landmark")
            landmark_location = primary_landmark.get("location", "")

            # 根據地標類型選擇適當的描述模板
            if scene_type == "natural_landmark" or primary_landmark.get("landmark_type") == "natural":
                base_description = f"A natural landmark scene featuring {landmark_name} in {landmark_location}."
            elif scene_type == "historical_monument" or primary_landmark.get("landmark_type") == "monument":
                base_description = f"A historical monument scene showcasing {landmark_name}, a significant landmark in {landmark_location}."
            else:
                base_description = f"A tourist landmark scene centered around {landmark_name}, an iconic structure in {landmark_location}."

        # 加地標的額外信息
        landmark_details = []
        for landmark in landmark_objects:
            details = []

            # 加建造年份
            if "year_built" in landmark:
                details.append(f"built in {landmark['year_built']}")

            # 加建築風格
            if "architectural_style" in landmark:
                details.append(f"featuring {landmark['architectural_style']} architectural style")

            # 加重要性
            if "significance" in landmark:
                details.append(landmark["significance"])

            # 如果有詳細信息,加到描述中
            if details:
                landmark_details.append(f"{landmark['class_name']} ({', '.join(details)})")

        # 將詳細信息添加到基本描述中
        if landmark_details:
            description = base_description + " " + "The scene features " + ", ".join(landmark_details) + "."
        else:
            description = base_description

        # 獲取視角
        viewpoint = self._detect_viewpoint(detected_objects)

        # 生成人員活動描述
        people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])  # 人的類別ID通常為0

        if people_count > 0:
            if people_count == 1:
                people_description = "There is one person in the scene, likely a tourist or visitor."
            elif people_count < 5:
                people_description = f"There are {people_count} people in the scene, possibly tourists visiting the landmark."
            else:
                people_description = f"The scene includes a group of {people_count} people, indicating this is a popular tourist destination."

            description = self._smart_append(description, people_description)

        # 添加照明信息
        if lighting_info and "time_of_day" in lighting_info:
            lighting_type = lighting_info["time_of_day"]
            if lighting_type in self.templates.get("lighting_templates", {}):
                lighting_description = self.templates["lighting_templates"][lighting_type]
                description = self._smart_append(description, lighting_description)

        # 添加視角描述
        if viewpoint != "eye_level" and viewpoint in self.templates.get("viewpoint_templates", {}):
            viewpoint_template = self.templates["viewpoint_templates"][viewpoint]

            # 添加視角前綴
            prefix = viewpoint_template.get('prefix', '')
            if prefix and not description.startswith(prefix):
                # 保持句子流暢性
                if description and description[0].isupper():
                    description = prefix + description[0].lower() + description[1:]
                else:
                    description = prefix + description

            # 添加視角觀察描述
            viewpoint_desc = viewpoint_template.get("observation", "").format(
                scene_elements="the landmark and surrounding area"
            )

            if viewpoint_desc and viewpoint_desc not in description:
                description = self._smart_append(description, viewpoint_desc)

        # 添加功能區域描述
        if functional_zones and len(functional_zones) > 0:
            zones_desc = self._describe_functional_zones(functional_zones)
            if zones_desc:
                description = self._smart_append(description, zones_desc)

        # 描述可能的活動
        landmark_activities = []

        # 根據地標類型生成通用活動
        if scene_type == "natural_landmark" or any(obj.get("landmark_type") == "natural" for obj in landmark_objects):
            landmark_activities = [
                "nature photography",
                "scenic viewing",
                "hiking or walking",
                "guided nature tours",
                "outdoor appreciation"
            ]
        elif scene_type == "historical_monument" or any(obj.get("landmark_type") == "monument" for obj in landmark_objects):
            landmark_activities = [
                "historical sightseeing",
                "educational tours",
                "cultural appreciation",
                "photography of historical architecture",
                "learning about historical significance"
            ]
        else:
            landmark_activities = [
                "sightseeing",
                "taking photographs",
                "guided tours",
                "cultural tourism",
                "souvenir shopping"
            ]

        # 添加活動描述
        if landmark_activities:
            activities_text = "Common activities at this location include " + ", ".join(landmark_activities[:3]) + "."
            description = self._smart_append(description, activities_text)

        # 最後格式化描述
        return self._format_final_description(description)

    def filter_landmark_references(self, text, enable_landmark=True):
        """
        動態過濾文本中的地標引用

        Args:
            text: 需要過濾的文本
            enable_landmark: 是否啟用地標功能

        Returns:
            str: 過濾後的文本
        """
        if enable_landmark or not text:
            return text

        try:
            # 動態收集所有地標名稱和位置
            landmark_names = []
            locations = []

            for landmark_id, info in ALL_LANDMARKS.items():
                # 收集地標名稱及其別名
                landmark_names.append(info["name"])
                landmark_names.extend(info.get("aliases", []))

                # 收集地理位置
                if "location" in info:
                    location = info["location"]
                    locations.append(location)

                    # 處理分離的城市和國家名稱
                    parts = location.split(",")
                    if len(parts) >= 1:
                        locations.append(parts[0].strip())
                    if len(parts) >= 2:
                        locations.append(parts[1].strip())

            # 使用正則表達式動態替換所有地標名稱
            import re
            for name in landmark_names:
                if name and len(name) > 2:  # 避免過短的名稱
                    text = re.sub(r'\b' + re.escape(name) + r'\b', "tall structure", text, flags=re.IGNORECASE)

            # 動態替換所有位置引用
            for location in locations:
                if location and len(location) > 2:
                    # 替換常見位置表述模式
                    text = re.sub(r'in ' + re.escape(location), "in the urban area", text, flags=re.IGNORECASE)
                    text = re.sub(r'of ' + re.escape(location), "of the urban area", text, flags=re.IGNORECASE)
                    text = re.sub(r'\b' + re.escape(location) + r'\b', "the urban area", text, flags=re.IGNORECASE)

        except ImportError:
            # 如果無法導入,使用基本模式
            pass

        # 通用地標描述模式替換
        landmark_patterns = [
            (r'a (tourist|popular|famous) landmark', r'an urban structure'),
            (r'an iconic structure in ([A-Z][a-zA-Z\s,]+)', r'an urban structure in the area'),
            (r'a famous (monument|tower|landmark) in ([A-Z][a-zA-Z\s,]+)', r'an urban structure in the area'),
            (r'(centered|built|located|positioned) around the ([A-Z][a-zA-Z\s]+? (Tower|Monument|Landmark))', r'located in this area'),
            (r'(sightseeing|guided tours|cultural tourism) (at|around|near) (this landmark|the [A-Z][a-zA-Z\s]+)', r'\1 in this area'),
            (r'this (famous|iconic|historic|well-known) (landmark|monument|tower|structure)', r'this urban structure'),
            (r'([A-Z][a-zA-Z\s]+) Tower', r'tall structure'),
            (r'a (tower|structure) in ([A-Z][a-zA-Z\s,]+)', r'a \1 in the area'),
            (r'landmark scene', r'urban scene'),
            (r'tourist destination', r'urban area'),
            (r'tourist attraction', r'urban area')
        ]

        for pattern, replacement in landmark_patterns:
            text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)

        return text


    def generate_description(self, scene_type: str, detected_objects: List[Dict], confidence: float,
                    lighting_info: Dict, functional_zones: List[str], enable_landmark: bool = True,
                    scene_scores: Optional[Dict] = None, spatial_analysis: Optional[Dict] = None,
                    image_dimensions: Optional[Dict] = None, places365_info: Optional[Dict] = None,
                    object_statistics: Optional[Dict] = None) -> str:
        """
        Generate enhanced scene description based on detection results, scene type,
        and additional contextual information.
        This version ensures that the main scene_details (from the first call)
        is properly integrated and not overwritten by a simplified second call.
        """
        # Handle unknown scene type or very low confidence as an early exit
        if scene_type == "unknown" or confidence < 0.4:
            # _generate_generic_description should also ideally use image_dimensions if it does spatial reasoning
            generic_desc = self._generate_generic_description(detected_objects, lighting_info)
            return self._format_final_description(generic_desc)

        # Filter out landmark objects if landmark detection is disabled for this run
        current_detected_objects = detected_objects
        if not enable_landmark:
            current_detected_objects = [obj for obj in detected_objects if not obj.get("is_landmark", False)]

        # Log Places365 context if available
        places365_context = ""
        if places365_info and places365_info.get('confidence', 0) > 0.3:
            scene_label = places365_info.get('scene_label', '')
            attributes = places365_info.get('attributes', [])
            is_indoor = places365_info.get('is_indoor', None)

            if scene_label:
                places365_context = f"Scene context: {scene_label}"
                if attributes:
                    places365_context += f" with characteristics: {', '.join(attributes[:3])}"
                if is_indoor is not None:
                    indoor_outdoor = "indoor" if is_indoor else "outdoor"
                    places365_context += f" ({indoor_outdoor} environment)"

            print(f"Enhanced description incorporating Places365 context: {places365_context}")

        landmark_objects_in_scene = [obj for obj in current_detected_objects if obj.get("is_landmark", False)]
        has_landmark_in_scene = len(landmark_objects_in_scene) > 0

        # If landmark processing is enabled and it's a landmark scene or landmarks are detected
        if enable_landmark and (scene_type in ["tourist_landmark", "natural_landmark", "historical_monument"] or has_landmark_in_scene):
            landmark_desc = self._generate_landmark_description(
                scene_type,
                current_detected_objects, # Pass potentially filtered list
                confidence,
                lighting_info,
                functional_zones,
                landmark_objects_in_scene # Pass the explicitly filtered landmark objects
            )
            return self._format_final_description(landmark_desc)

        # **[Start of main description construction for non-landmark or landmark-disabled everyday scenes]**

        # Detect viewpoint based on current (potentially filtered) objects
        viewpoint = self._detect_viewpoint(current_detected_objects)
        current_scene_type = scene_type # Use a mutable variable for scene_type if it can change

        # Process aerial viewpoint scene types (may re-assign current_scene_type)
        if viewpoint == "aerial":
            if "intersection" in current_scene_type.lower() or self._is_intersection(current_detected_objects): # Use lower for robustness
                current_scene_type = "aerial_view_intersection"
            elif any(keyword in current_scene_type.lower() for keyword in ["commercial", "shopping", "retail"]):
                current_scene_type = "aerial_view_commercial_area"
            elif any(keyword in current_scene_type.lower() for keyword in ["plaza", "square"]):
                current_scene_type = "aerial_view_plaza"
            else: # Default aerial if specific not matched
                current_scene_type = "aerial_view_general" # Or use a specific default like aerial_view_intersection

        # Detect cultural context (only for non-aerial viewpoints)
        cultural_context = None
        if viewpoint != "aerial":
            cultural_context = self._detect_cultural_context(current_scene_type, current_detected_objects)

        # Get base description for the (potentially updated) scene type
        base_description = "A scene" # Default initialization
        if viewpoint == "aerial":
            # Check if current_scene_type (which might be an aerial type) has a base description
            if current_scene_type in self.scene_types:
                 base_description = self.scene_types[current_scene_type].get("description", "An aerial view showing the layout and movement patterns from above")
            else:
                 base_description = "An aerial view showing the layout and movement patterns from above"
        elif current_scene_type in self.scene_types:
            base_description = self.scene_types[current_scene_type].get("description", "A scene")

        # spatial analysis, and image dimensions. This is where dynamic description or template filling happens.
        core_scene_details = self._generate_scene_details(
            current_scene_type, # Use the potentially updated scene_type
            current_detected_objects,
            lighting_info,
            viewpoint,
            spatial_analysis=spatial_analysis,    # Pass this through
            image_dimensions=image_dimensions,     # Pass this through
            places365_info=places365_info,        # Pass Places365 info
            object_statistics=object_statistics   # Pass object statistics
        )

        # Start with the base description derived from SCENE_TYPES or a default.
        description = base_description
        if core_scene_details and core_scene_details.strip() != "": # Ensure core_scene_details is not empty
            # If base_description is generic like "A scene", consider replacing it or appending smartly.
            if base_description.lower() == "a scene" and len(core_scene_details) > len(base_description):
                description = core_scene_details # Prioritize dynamic/template-filled details if base is too generic
            else:
                description = self._smart_append(description, core_scene_details)
        elif not core_scene_details and not description: # If both are empty, use a generic fallback
            description = self._generate_generic_description(current_detected_objects, lighting_info)


        # Append secondary description from scene type template, if any
        if current_scene_type in self.scene_types and "secondary_description" in self.scene_types[current_scene_type]:
            secondary_desc = self.scene_types[current_scene_type]["secondary_description"]
            if secondary_desc:
                description = self._smart_append(description, secondary_desc)

        # Append people count information
        people_objs = [obj for obj in current_detected_objects if obj.get("class_id") == 0]
        if people_objs:
            people_count = len(people_objs)

            if people_count == 1: people_phrase = "a single person"
            elif people_count > 1 and people_count <= 3: people_phrase = f"{people_count} people" # Accurate for small counts
            elif people_count > 3 and people_count <=7: people_phrase = "several people"
            else: people_phrase = "multiple people" # For larger counts, or use "numerous"

            # Only add if not already well covered in core_scene_details or base_description
            if "person" not in description.lower() and "people" not in description.lower() and "pedestrian" not in description.lower():
                description = self._smart_append(description, f"The scene includes {people_phrase}.")

        # Append cultural context
        if cultural_context and viewpoint != "aerial": # Already checked viewpoint
            cultural_elements = self._generate_cultural_elements(cultural_context)
            if cultural_elements:
                description = self._smart_append(description, cultural_elements)

        # Append lighting information
        lighting_description_text = ""
        if lighting_info and "time_of_day" in lighting_info:
            lighting_type = lighting_info["time_of_day"]
            lighting_desc_template = self.templates.get("lighting_templates", {}).get(lighting_type)
            if lighting_desc_template:
                lighting_description_text = lighting_desc_template
        if lighting_description_text and lighting_description_text.lower() not in description.lower():
            description = self._smart_append(description, lighting_description_text)

        # Append viewpoint information (if not eye-level)
        if viewpoint != "eye_level" and viewpoint in self.templates.get("viewpoint_templates", {}):
            viewpoint_template = self.templates["viewpoint_templates"][viewpoint]
            prefix = viewpoint_template.get('prefix', '')
            observation_template = viewpoint_template.get("observation", "")

            # Determine scene_elements for the observation template
            scene_elements_for_vp = "the overall layout and objects" # Generic default
            if viewpoint == "aerial":
                scene_elements_for_vp = "crossing patterns and general layout"

            viewpoint_observation_text = observation_template.format(scene_elements=scene_elements_for_vp)

            # Combine prefix and observation carefully
            full_viewpoint_text = ""
            if prefix:
                full_viewpoint_text = prefix.strip() + " "
                if viewpoint_observation_text and viewpoint_observation_text[0].islower():
                    full_viewpoint_text += viewpoint_observation_text
                elif viewpoint_observation_text:
                    full_viewpoint_text = prefix + viewpoint_observation_text[0].lower() + viewpoint_observation_text[1:] if description else prefix + viewpoint_observation_text

            elif viewpoint_observation_text: # No prefix, but observation exists
                 full_viewpoint_text = viewpoint_observation_text[0].upper() + viewpoint_observation_text[1:]


            if full_viewpoint_text and full_viewpoint_text.lower() not in description.lower():
                description = self._smart_append(description, full_viewpoint_text)


        # Append functional zones information
        if functional_zones and len(functional_zones) > 0:
            zones_desc_text = self._describe_functional_zones(functional_zones)
            if zones_desc_text:
                description = self._smart_append(description, zones_desc_text)

        final_formatted_description = self._format_final_description(description)

        if not enable_landmark:
            final_formatted_description = self.filter_landmark_references(final_formatted_description, enable_landmark=False)

        # If after all processing, description is empty, fallback to a very generic one.
        if not final_formatted_description.strip() or final_formatted_description.strip() == ".":
            self.logger.warning(f"Description for scene_type '{current_scene_type}' became empty after processing. Falling back.")
            final_formatted_description = self._format_final_description(
                self._generate_generic_description(current_detected_objects, lighting_info)
            )

        return final_formatted_description


    def _smart_append(self, current_text: str, new_fragment: str) -> str:
        """
        Intelligently append a new text fragment to the current text,
        handling punctuation and capitalization correctly.

        Args:
            current_text: The existing text to append to
            new_fragment: The new text fragment to append

        Returns:
            str: The combined text with proper formatting
        """
        # Handle empty cases
        if not new_fragment:
            return current_text

        if not current_text:
            # Ensure first character is uppercase for the first fragment
            return new_fragment[0].upper() + new_fragment[1:] if new_fragment else ""

        # Clean up existing text
        current_text = current_text.rstrip()

        # Check for ending punctuation
        ends_with_sentence = current_text.endswith(('.', '!', '?'))
        ends_with_comma = current_text.endswith(',')

        # Specifically handle the "A xxx A yyy" pattern that's causing issues
        if (current_text.startswith("A ") or current_text.startswith("An ")) and \
        (new_fragment.startswith("A ") or new_fragment.startswith("An ")):
            return current_text + ". " + new_fragment

        # 檢查新片段是否包含地標名稱(通常為專有名詞)
        has_landmark_name = any(word[0].isupper() for word in new_fragment.split()
                            if len(word) > 2 and not word.startswith(("A ", "An ", "The ")))

        # Decide how to join the texts
        if ends_with_sentence:
            # After a sentence, start with uppercase and add proper spacing
            joined_text = current_text + " " + (new_fragment[0].upper() + new_fragment[1:])
        elif ends_with_comma:
            # After a comma, maintain flow with lowercase unless it's a proper noun or special case
            if new_fragment.startswith(('I ', 'I\'', 'A ', 'An ', 'The ')) or new_fragment[0].isupper() or has_landmark_name:
                joined_text = current_text + " " + new_fragment
            else:
                joined_text = current_text + " " + new_fragment[0].lower() + new_fragment[1:]
        elif "scene is" in new_fragment.lower() or "scene includes" in new_fragment.lower():
            # When adding a new sentence about the scene, use a period
            joined_text = current_text + ". " + new_fragment
        else:
            # For other cases, decide based on the content
            if self._is_related_phrases(current_text, new_fragment):
                if new_fragment.startswith(('I ', 'I\'', 'A ', 'An ', 'The ')) or new_fragment[0].isupper() or has_landmark_name:
                    joined_text = current_text + ", " + new_fragment
                else:
                    joined_text = current_text + ", " + new_fragment[0].lower() + new_fragment[1:]
            else:
                # Use period for unrelated phrases
                joined_text = current_text + ". " + (new_fragment[0].upper() + new_fragment[1:])

        return joined_text

    def _is_related_phrases(self, text1: str, text2: str) -> bool:
        """
        Determine if two phrases are related and should be connected with a comma
        rather than separated with a period.

        Args:
            text1: The first text fragment
            text2: The second text fragment to be appended

        Returns:
            bool: Whether the phrases appear to be related
        """
        # Check if either phrase starts with "A" or "An" - these are likely separate descriptions
        if (text1.startswith("A ") or text1.startswith("An ")) and \
        (text2.startswith("A ") or text2.startswith("An ")):
            return False  # These are separate descriptions, not related phrases

        # Check if the second phrase starts with a connecting word
        connecting_words = ["which", "where", "who", "whom", "whose", "with", "without",
                        "this", "these", "that", "those", "and", "or", "but"]

        first_word = text2.split()[0].lower() if text2 else ""
        if first_word in connecting_words:
            return True

        # Check if the first phrase ends with something that suggests continuity
        ending_patterns = ["such as", "including", "like", "especially", "particularly",
                        "for example", "for instance", "namely", "specifically"]

        for pattern in ending_patterns:
            if text1.lower().endswith(pattern):
                return True

        # Check if both phrases are about the scene
        if "scene" in text1.lower() and "scene" in text2.lower():
            return False  # Separate statements about the scene should be separate sentences

        return False


    def _format_final_description(self, text: str) -> str:
        """
        Format the final description text to ensure correct punctuation,
        capitalization, and spacing.
        """
        if not text or not text.strip(): # Also check if text is just whitespace
            return ""

        # Trim leading/trailing whitespace first
        text = text.strip()

        # 1. Handle consecutive "A/An" segments (potentially split them into sentences)
        text = re.sub(r'(A\s+[^.!?]+?[\w\.])\s+(A\s+)', r'\1. \2', text, flags=re.IGNORECASE)
        text = re.sub(r'(An\s+[^.!?]+?[\w\.])\s+(An?\s+)', r'\1. \2', text, flags=re.IGNORECASE)

        # 2. Ensure first character of the entire text is uppercase
        if text:
            text = text[0].upper() + text[1:]

        # 3. Normalize whitespace: multiple spaces to one
        text = re.sub(r'\s{2,}', ' ', text)

        # 4. Capitalize after sentence-ending punctuation (. ! ?)
        def capitalize_after_punctuation(match):
            return match.group(1) + match.group(2).upper()
        text = re.sub(r'([.!?]\s+)([a-z])', capitalize_after_punctuation, text)

        # 5. Handle capitalization after commas (your existing robust logic is good)
        def fix_capitalization_after_comma(match):
            leading_comma_space = match.group(1) # (,\s+)
            word_after_comma = match.group(2)    # ([A-Z][a-zA-Z]*)

            proper_nouns_exceptions = ["I", "I'm", "I've", "I'd", "I'll",
                                     "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday",
                                     "January", "February", "March", "April", "May", "June", "July",
                                     "August", "September", "October", "November", "December"]

            if word_after_comma in proper_nouns_exceptions:
                return match.group(0)
            # If the word looks like a proper noun (e.g., multi-word capitalized, or a known location/brand)
            # This heuristic can be tricky. For simplicity, if it's already capitalized and not a common word, keep it.
            if len(word_after_comma) > 2 and word_after_comma[0].isupper() and word_after_comma.lower() not in ["this", "that", "these", "those", "they", "their", "then", "thus"]:
                 return match.group(0) # Keep it if it looks like a proper noun already

            return leading_comma_space + word_after_comma[0].lower() + word_after_comma[1:]
        text = re.sub(r'(,\s+)([A-Z][a-zA-Z\'\-]+)', fix_capitalization_after_comma, text) # Added hyphen and apostrophe to word

        # 6. Correct spacing around punctuation
        text = re.sub(r'\s*([.,;:!?])\s*', r'\1 ', text) # Ensures one space AFTER punctuation, none before
        text = text.replace(' .', '.').replace(' ,', ',') # Clean up potential space before period/comma from previous rule

        # 7. Consolidate multiple sentence-ending punctuations (e.g., "!!", "?.", ".?")
        text = re.sub(r'[.!?]{2,}', '.', text) # Convert multiple to a single period
        text = re.sub(r',+', ',', text) # Multiple commas to one

        # 8. Ensure text ends with a single sentence-ending punctuation mark
        text = text.strip() # Remove trailing whitespace before checking last char
        if text and not text[-1] in '.!?':
            text += '.'

        # 9. Remove any leading punctuation or extra spaces that might have been introduced
        text = re.sub(r'^[.,;:!?\s]+', '', text)

        # 10. Final check for first letter capitalization
        if text:
            text = text[0].upper() + text[1:]

        # 11. Remove space before final punctuation mark if accidentally added by rule 7
        text = re.sub(r'\s+([.!?])$', r'\1', text)

        return text.strip() # Final strip

    def _is_intersection(self, detected_objects: List[Dict]) -> bool:
        """
        通過分析物體分佈來判斷場景是否為十字路口
        """
        # 檢查行人分佈模式
        pedestrians = [obj for obj in detected_objects if obj["class_id"] == 0]

        if len(pedestrians) >= 8:  # 需要足夠的行人來形成十字路口
            # 抓取行人位置
            positions = [obj.get("normalized_center", (0, 0)) for obj in pedestrians]

            # 分析 x 和 y 坐標分佈
            x_coords = [pos[0] for pos in positions]
            y_coords = [pos[1] for pos in positions]

            # 計算 x 和 y 坐標的變異數
            x_variance = np.var(x_coords) if len(x_coords) > 1 else 0
            y_variance = np.var(y_coords) if len(y_coords) > 1 else 0

            # 計算範圍
            x_range = max(x_coords) - min(x_coords)
            y_range = max(y_coords) - min(y_coords)

            # 如果 x 和 y 方向都有較大範圍且範圍相似,那就有可能是十字路口
            if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3:
                return True

        return False

    def _generate_generic_description(self, detected_objects: List[Dict], lighting_info: Optional[Dict] = None) -> str:
        """
        Generate a generic description when scene type is unknown or confidence is very low.

        Args:
            detected_objects: List of detected objects
            lighting_info: Optional lighting condition information

        Returns:
            str: Generic description based on detected objects
        """
        # Count object occurrences
        obj_counts = {}
        for obj in detected_objects:
            class_name = obj["class_name"]
            if class_name not in obj_counts:
                obj_counts[class_name] = 0
            obj_counts[class_name] += 1

        # Get top objects by count
        top_objects = sorted(obj_counts.items(), key=lambda x: x[1], reverse=True)[:5]

        if not top_objects:
            base_desc = "No clearly identifiable objects are visible in this scene."
        else:
            # Format object list
            objects_text = []
            for name, count in top_objects:
                if count > 1:
                    objects_text.append(f"{count} {name}s")
                else:
                    objects_text.append(name)

            if len(objects_text) == 1:
                objects_list = objects_text[0]
            elif len(objects_text) == 2:
                objects_list = f"{objects_text[0]} and {objects_text[1]}"
            else:
                objects_list = ", ".join(objects_text[:-1]) + f", and {objects_text[-1]}"

            base_desc = f"This scene contains {objects_list}."

        # Add lighting information if available
        if lighting_info and "time_of_day" in lighting_info:
            lighting_type = lighting_info["time_of_day"]
            if lighting_type in self.templates.get("lighting_templates", {}):
                lighting_desc = self.templates["lighting_templates"][lighting_type]
                base_desc += f" {lighting_desc}"

        return base_desc

    def _get_prominent_objects(self, detected_objects: List[Dict], min_prominence_score: float = 0.1, max_categories_to_return: int = 5, max_total_objects: int = 7) -> List[Dict]:
        """
        Helper function to get the most prominent objects.
        Prioritizes high-confidence, large objects, and ensures a diversity of object types.

        Args:
            detected_objects: List of detected objects.
            min_prominence_score: Minimum score for an object to be considered initially.
            max_categories_to_return: Max number of different object categories to prioritize.
            max_total_objects: Overall cap on the number of prominent objects returned.

        Returns:
            List of prominent detected objects.
        """
        if not detected_objects:
            return []

        scored_objects = []
        for obj in detected_objects:
            area = obj.get("normalized_area", 0.0) + 1e-6
            confidence = obj.get("confidence", 0.0)

            # Base score: area and confidence are key
            score = (area * 0.65) + (confidence * 0.35) # Slightly more weight to area

            # Bonus for generally important object classes (in a generic way)
            # This is a simple heuristic. More advanced would be context-dependent.
            # For example, 'person' is often more salient.
            # Avoid hardcoding specific class_ids here if possible, or use broad categories if available.
            # For simplicity, we'll keep the landmark bonus for now.
            if obj.get("class_name") == "person": # Example: person is generally prominent
                 score += 0.1
            if obj.get("is_landmark"): # Landmarks are always prominent
                score += 0.5

            if score >= min_prominence_score:
                 scored_objects.append((obj, score))

        if not scored_objects:
            return []

        # Sort by score in descending order
        scored_objects.sort(key=lambda x: x[1], reverse=True)

        # Prioritize diversity of object categories first
        prominent_by_category = {}
        final_prominent_objects = []

        for obj, score in scored_objects:
            category = obj.get("class_name", "unknown")
            if category not in prominent_by_category:
                if len(prominent_by_category) < max_categories_to_return:
                    prominent_by_category[category] = obj
                    final_prominent_objects.append(obj)

            elif len(final_prominent_objects) < max_total_objects and obj not in final_prominent_objects:
                 if score > 0.3:
                    final_prominent_objects.append(obj)

        # If still under max_total_objects, fill with highest scored remaining objects regardless of category
        if len(final_prominent_objects) < max_total_objects:
            for obj, score in scored_objects:
                if len(final_prominent_objects) >= max_total_objects:
                    break
                if obj not in final_prominent_objects:
                    final_prominent_objects.append(obj)

        # Re-sort the final list by original prominence score to maintain order
        final_prominent_objects_with_scores = []
        for obj in final_prominent_objects:
            for original_obj, original_score in scored_objects:
                if obj is original_obj: # Check for object identity
                    final_prominent_objects_with_scores.append((obj, original_score))
                    break

        final_prominent_objects_with_scores.sort(key=lambda x: x[1], reverse=True)

        return [obj for obj, score in final_prominent_objects_with_scores[:max_total_objects]]


    def _format_object_list_for_description(self,
                                            objects: List[Dict],
                                            use_indefinite_article_for_one: bool = False,
                                            count_threshold_for_generalization: int = -1, # Default to -1 for precise counts
                                            max_types_to_list: int = 5
                                           ) -> str:
        """
        Formats a list of detected objects into a human-readable string with counts.
        Args:
            objects: List of object dictionaries, each expected to have 'class_name'.
            use_indefinite_article_for_one: If True, uses "a/an" for single items. If False, uses "one".
            count_threshold_for_generalization: If count exceeds this, use general terms. -1 means precise counts.
            max_types_to_list: Maximum number of different object types to include in the list.
        """
        if not objects:
            return "no specific objects clearly identified"

        counts: Dict[str, int] = {}
        for obj in objects:
            name = obj.get("class_name", "unknown object")
            if name == "unknown object" or not name: # Skip unknown or empty names
                continue
            counts[name] = counts.get(name, 0) + 1

        if not counts:
            return "no specific objects clearly identified"

        descriptions = []
        # Sort by count (desc) then name (asc) for consistent output order
        # Limit the number of distinct object types being listed
        sorted_counts = sorted(counts.items(), key=lambda item: (-item[1], item[0]))[:max_types_to_list]


        for name, count in sorted_counts:
            if count == 1:
                if use_indefinite_article_for_one:
                    if name[0].lower() in 'aeiou':
                        descriptions.append(f"an {name}")
                    else:
                        descriptions.append(f"a {name}")
                else:
                    descriptions.append(f"one {name}") # Output "one car" instead of "a car"
            else: # count > 1
                plural_name = name
                if name.endswith("y") and not name.lower().endswith(("ay", "ey", "iy", "oy", "uy")):
                    plural_name = name[:-1] + "ies"
                elif name.endswith(("s", "sh", "ch", "x", "z")):
                    plural_name = name + "es"
                elif not name.endswith("s"): # Avoid double 's' like "buss"
                    plural_name = name + "s"

                if count_threshold_for_generalization != -1 and count > count_threshold_for_generalization:
                    if count <= count_threshold_for_generalization + 3:
                        descriptions.append(f"several {plural_name}")
                    else:
                        descriptions.append(f"many {plural_name}")
                else: # Use exact count (e.g., "6 cars")
                    descriptions.append(f"{count} {plural_name}")

        if not descriptions:
            return "no specific objects clearly identified"

        if len(descriptions) == 1:
            return descriptions[0]
        elif len(descriptions) == 2:
            return f"{descriptions[0]} and {descriptions[1]}"
        else:
            # Oxford comma for lists of 3 or more.
            return ", ".join(descriptions[:-1]) + f", and {descriptions[-1]}"

    def _get_spatial_description(self, obj: Dict, image_width: Optional[int] = None, image_height: Optional[int] = None) -> str:
        """
        Generates a brief spatial description for an object.
        (This is a new helper function)
        """
        region = obj.get("region")
        if region:
            # Convert region name to more descriptive terms
            region_map = {
                "top_left": "in the top-left", "top_center": "at the top-center", "top_right": "in the top-right",
                "middle_left": "on the middle-left side", "middle_center": "in the center", "middle_right": "on the middle-right side",
                "bottom_left": "in the bottom-left", "bottom_center": "at the bottom-center", "bottom_right": "in the bottom-right"
            }
            # More general terms if exact region is not critical
            if "top" in region: general_v_pos = "towards the top"
            elif "bottom" in region: general_v_pos = "towards the bottom"
            else: general_v_pos = "in the middle vertically"

            if "left" in region: general_h_pos = "towards the left"
            elif "right" in region: general_h_pos = "towards the right"
            else: general_h_pos = "in the center horizontally"

            # Prioritize specific region if available, else use general
            specific_desc = region_map.get(region, "")
            if specific_desc:
                return f"{specific_desc} of the frame"
            else:
                return f"{general_v_pos} and {general_h_pos} of the frame"

        # Fallback if region info is not detailed enough or missing
        # We can use normalized_center if available
        norm_center = obj.get("normalized_center")
        if norm_center and image_width and image_height: # Check if image_width/height are provided
            x_norm, y_norm = norm_center
            h_pos = "left" if x_norm < 0.4 else "right" if x_norm > 0.6 else "center"
            v_pos = "top" if y_norm < 0.4 else "bottom" if y_norm > 0.6 else "middle"

            if h_pos == "center" and v_pos == "middle":
                return "near the center of the image"
            return f"in the {v_pos}-{h_pos} area of the image"

        return "in the scene" # Generic fallback


    def _generate_dynamic_everyday_description(self,
                                          detected_objects: List[Dict],
                                          lighting_info: Optional[Dict] = None,
                                          viewpoint: str = "eye_level",
                                          spatial_analysis: Optional[Dict] = None,
                                          image_dimensions: Optional[Tuple[int, int]] = None,
                                          places365_info: Optional[Dict] = None,
                                          object_statistics: Optional[Dict] = None
                                          ) -> str:
        """
        Dynamically generates a description for everyday scenes based on ALL relevant detected_objects,
        their counts, and context.
        It aims to describe the overall scene first, then details of object groups including accurate counts.
        """
        description_segments = []
        image_width, image_height = image_dimensions if image_dimensions else (None, None)

        if hasattr(self, 'logger'):
            self.logger.info(f"DynamicDesc: Start. Total Raw Objects: {len(detected_objects)}, View: {viewpoint}, Light: {lighting_info is not None}")

        # 1. Overall Ambiance (Lighting and Viewpoint)
        ambiance_parts = []
        if lighting_info:
            time_of_day = lighting_info.get("time_of_day", "unknown lighting")
            is_indoor = lighting_info.get("is_indoor")
            ambiance_statement = "This is"
            if is_indoor is True: ambiance_statement += " an indoor scene"
            elif is_indoor is False: ambiance_statement += " an outdoor scene"
            else: ambiance_statement += " a scene"
            lighting_map = self.templates.get("lighting_templates", {})
            readable_lighting_base = lighting_map.get(time_of_day, f"with {time_of_day.replace('_', ' ')} lighting conditions")
            readable_lighting = readable_lighting_base.lower().replace("the scene is captured", "").replace("the scene has", "").strip()
            ambiance_statement += f", likely {readable_lighting}."
            ambiance_parts.append(ambiance_statement)

        if viewpoint and viewpoint != "eye_level":
            vp_templates = self.templates.get("viewpoint_templates", {})
            if viewpoint in vp_templates:
                vp_prefix = vp_templates[viewpoint].get("prefix", "").strip()
                if vp_prefix:
                    if not ambiance_parts:
                        ambiance_parts.append(f"{vp_prefix.capitalize()} the general layout of the scene is observed.")
                    else:
                        ambiance_parts[-1] = ambiance_parts[-1].rstrip('.') + f", viewed {vp_templates[viewpoint].get('short_desc', viewpoint)}."

        if ambiance_parts:
            description_segments.append(" ".join(ambiance_parts))

        # 2. Describe ALL detected objects, grouped by class, with accurate counts and locations
        if not detected_objects:
            # This part remains, but the conditions to reach here might change based on confident_objects check
            if not description_segments:
                 description_segments.append("A general scene is visible, but no specific objects were clearly identified.")
            else:
                 description_segments.append("Within this setting, no specific objects were clearly identified.")
        else:
            objects_by_class: Dict[str, List[Dict]] = {}

            # keeping 0.25 as a placeholder
            confidence_filter_threshold = getattr(self, 'confidence_threshold_for_description', 0.25)
            confident_objects = [obj for obj in detected_objects if obj.get("confidence", 0) >= confidence_filter_threshold]

            if not confident_objects:
                 # This message is more appropriate if objects existed but none met confidence
                 no_confident_obj_msg = "While some elements might be present, no objects were identified with sufficient confidence for a detailed description."
                 if not description_segments: description_segments.append(no_confident_obj_msg)
                 else: description_segments.append(no_confident_obj_msg.lower().capitalize()) # Append as a new sentence
            else:
                if object_statistics:
                    # 使用預計算的統計信息,並採用動態置信度策略
                    for class_name, stats in object_statistics.items():
                        count = stats.get("count", 0)
                        avg_confidence = stats.get("avg_confidence", 0)

                        # 動態調整置信度閾值:裝飾性物品使用較低閾值
                        dynamic_threshold = confidence_filter_threshold
                        if class_name in ["potted plant", "vase", "clock", "book"]:
                            dynamic_threshold = max(0.15, confidence_filter_threshold * 0.6)
                        elif count >= 3:  # 數量多的物品降低閾值
                            dynamic_threshold = max(0.2, confidence_filter_threshold * 0.8)

                        if count > 0 and avg_confidence >= dynamic_threshold:
                            matching_objects = [obj for obj in confident_objects if obj.get("class_name") == class_name]
                            if not matching_objects:
                                # 如果高信心度的物體中沒有,從原始列表中尋找
                                matching_objects = [obj for obj in detected_objects
                                                if obj.get("class_name") == class_name and obj.get("confidence", 0) >= dynamic_threshold]

                            if matching_objects:
                                actual_count = min(stats["count"], len(matching_objects))
                                objects_by_class[class_name] = matching_objects[:actual_count]
                else:
                    # 回退邏輯同樣使用動態閾值
                    for obj in confident_objects:
                        name = obj.get("class_name", "unknown object")
                        if name == "unknown object" or not name: continue
                        if name not in objects_by_class:
                            objects_by_class[name] = []
                        objects_by_class[name].append(obj)

                if not objects_by_class: # Should be rare if confident_objects was not empty and had valid names
                    description_segments.append("No common objects were confidently identified for detailed description.")
                else:
                    def sort_key_object_groups(item_tuple: Tuple[str, List[Dict]]):
                        class_name_key, obj_group_list = item_tuple
                        priority = 3  # 預設優先級
                        count = len(obj_group_list)

                        # 動態優先級:基於場景相關性和數量
                        if class_name_key == "person":
                            priority = 0
                        elif class_name_key in ["dining table", "chair", "sofa", "bed"]:
                            priority = 1  # 室內主要家具
                        elif class_name_key in ["car", "bus", "truck", "traffic light"]:
                            priority = 2  # 交通相關物體
                        elif count >= 3:  # 數量多的物體提升優先級
                            priority = max(1, priority - 1)
                        elif class_name_key in ["potted plant", "vase", "clock", "book"] and count >= 2:
                            priority = 2  # 裝飾性物品有一定數量時提升優先級

                        avg_area = sum(o.get("normalized_area", 0.0) for o in obj_group_list) / len(obj_group_list) if obj_group_list else 0

                        # 增加數量權重:多個同類物體更重要
                        quantity_bonus = min(count / 5.0, 1.0)  # 最多1.0的加成

                        return (priority, -len(obj_group_list), -avg_area, -quantity_bonus)

                    # 去除重複的邏輯
                    deduplicated_objects_by_class = {}
                    processed_positions = []

                    for class_name, group_of_objects in objects_by_class.items():
                        unique_objects = []

                        for obj in group_of_objects:
                            obj_position = obj.get("normalized_center", [0.5, 0.5])
                            is_duplicate = False

                            # 檢查是否與已處理的物體位置重疊
                            for processed_pos in processed_positions:
                                position_distance = abs(obj_position[0] - processed_pos[0]) + abs(obj_position[1] - processed_pos[1])
                                if position_distance < 0.15:  # 位置重疊閾值
                                    is_duplicate = True
                                    break

                            if not is_duplicate:
                                unique_objects.append(obj)
                                processed_positions.append(obj_position)

                        if unique_objects:
                            deduplicated_objects_by_class[class_name] = unique_objects

                    objects_by_class = deduplicated_objects_by_class

                    sorted_object_groups = sorted(objects_by_class.items(), key=sort_key_object_groups)

                    object_clauses = [] # Stores individual object group descriptions

                    for class_name, group_of_objects in sorted_object_groups:
                        count = len(group_of_objects)
                        if count == 0: continue

                        # 使用統計信息確保準確的數量描述
                        if object_statistics and class_name in object_statistics:
                            actual_count = object_statistics[class_name]["count"]
                            # 根據實際統計數量生成描述
                            if actual_count == 1:
                                formatted_name_with_exact_count = f"one {class_name}"
                            else:
                                plural_form = f"{class_name}s" if not class_name.endswith('s') else class_name
                                formatted_name_with_exact_count = f"{actual_count} {plural_form}"
                        else:
                            # 回退到原有的格式化邏輯
                            formatted_name_with_exact_count = self._format_object_list_for_description(
                                [group_of_objects[0]] * count,
                                use_indefinite_article_for_one=False,
                                count_threshold_for_generalization=-1
                            )

                        if formatted_name_with_exact_count == "no specific objects clearly identified" or not formatted_name_with_exact_count:
                            continue

                        # Determine collective location for the group
                        location_description_suffix = "" # e.g., "is in the center" or "are in the west area"
                        if count == 1:
                            location_description_suffix = f"is {self._get_spatial_description(group_of_objects[0], image_width, image_height)}"
                        else:
                            distinct_regions = sorted(list(set(obj.get("region", "unknown_region") for obj in group_of_objects)))
                            known_regions = [r for r in distinct_regions if r != "unknown_region"]
                            if not known_regions and "unknown_region" in distinct_regions:
                                location_description_suffix = "are visible in the scene"
                            elif len(known_regions) == 1:
                                location_description_suffix = f"are primarily in the {known_regions[0].replace('_', ' ')} area"
                            elif len(known_regions) == 2:
                                location_description_suffix = f"are mainly across the {known_regions[0].replace('_',' ')} and {known_regions[1].replace('_',' ')} areas"
                            elif len(known_regions) > 2:
                                location_description_suffix = "are distributed in various parts of the scene"
                            else:
                                location_description_suffix = "are visible in the scene"

                        # Capitalize the object description (e.g., "Six cars")
                        formatted_name_capitalized = formatted_name_with_exact_count[0].upper() + formatted_name_with_exact_count[1:]
                        object_clauses.append(f"{formatted_name_capitalized} {location_description_suffix}")

                    if object_clauses:
                        # Join object clauses into one or more sentences.
                        if not description_segments: # If no ambiance, start with the first object clause.
                            if object_clauses:
                                first_clause = object_clauses.pop(0) # Take the first one out
                                description_segments.append(first_clause + ".")
                        else: # Ambiance exists, prepend with "The scene features..." or similar
                            if object_clauses:
                                description_segments.append("The scene features:") # Or "Key elements include:"

                        # Add remaining object clauses as separate points or a continuous sentence
                        # For now, let's join them into a single continuous sentence string to be added.
                        if object_clauses: # If there are more clauses after the first (or after "The scene features:")
                            joined_object_clauses = ". ".join(object_clauses)
                            if joined_object_clauses and not joined_object_clauses.endswith("."):
                                joined_object_clauses += "."
                            description_segments.append(joined_object_clauses)

                    elif not description_segments : # No ambiance and no describable objects after filtering
                        return "The image depicts a scene, but specific objects could not be described with confidence or detail."

        # --- Final assembly and formatting ---
        # Join all collected segments. _smart_append might be better if parts are not full sentences.
        # Since we aim for full sentences in segments, simple join then format.
        raw_description = ""
        for i, segment in enumerate(filter(None, description_segments)):
            segment = segment.strip()
            if not segment: continue

            if not raw_description: # First non-empty segment
                raw_description = segment
            else:
                if not raw_description.endswith(('.', '!', '?')):
                    raw_description += "."
                raw_description += " " + (segment[0].upper() + segment[1:] if len(segment) > 1 else segment.upper())

        if raw_description and not raw_description.endswith(('.', '!', '?')):
            raw_description += "."

        final_description = self._format_final_description(raw_description) # Crucial for final polish

        if not final_description or len(final_description.strip()) < 20:
            # Fallback if description is too short or empty after processing
            # Use a more informative fallback if confident_objects existed
            if 'confident_objects' in locals() and confident_objects:
                 return "The scene contains several detected objects, but a detailed textual description could not be fully constructed."
            else:
                 return "A general scene is depicted with no objects identified with high confidence."

        return final_description


    def _generate_scene_details(self,
                          scene_type: str,
                          detected_objects: List[Dict],
                          lighting_info: Optional[Dict] = None,
                          viewpoint: str = "eye_level",
                          spatial_analysis: Optional[Dict] = None,
                          image_dimensions: Optional[Tuple[int, int]] = None,
                          places365_info: Optional[Dict] = None,
                          object_statistics: Optional[Dict] = None
                          ) -> str:
        """
        Generate detailed description based on scene type and detected objects.
        Enhanced to handle everyday scenes dynamically with accurate object counting.

        Args:
            scene_type: Identified scene type.
            detected_objects: List of detected objects.
            lighting_info: Optional lighting condition information.
            viewpoint: Detected viewpoint (aerial, eye_level, etc.).
            spatial_analysis: Optional results from SpatialAnalyzer.
            image_dimensions: Optional tuple of (image_width, image_height).
            places365_info: Optional Places365 scene classification results.
            object_statistics: Optional detailed object statistics with counts and confidence.

        Returns:
            str: Detailed scene description.
        """
        scene_details = ""
        scene_templates = self.templates.get("scene_detail_templates", {})

        # List of scene types considered "everyday" or generic
        everyday_scene_types = [
            "general_indoor_space", "generic_street_view",
            "desk_area_workspace", "outdoor_gathering_spot",
            "kitchen_counter_or_utility_area", "unknown"
        ]

        # Extract Places365 attributes for enhanced description
        places365_attributes = []
        scene_specific_details = ""

        if places365_info and places365_info.get('confidence', 0) > 0.4:
            attributes = places365_info.get('attributes', [])
            scene_label = places365_info.get('scene_label', '')

            # Filter relevant attributes for description enhancement
            relevant_attributes = [attr for attr in attributes if attr in [
                'natural_lighting', 'artificial_lighting', 'commercial', 'residential',
                'workplace', 'recreational', 'educational', 'open_space', 'enclosed_space'
            ]]
            places365_attributes = relevant_attributes[:2]

            # Generate scene-specific contextual details using object statistics
            if object_statistics:
                if 'commercial' in attributes and object_statistics.get('person', {}).get('count', 0) > 0:
                    person_count = object_statistics['person']['count']
                    if person_count == 1:
                        scene_specific_details = "This appears to be an active commercial environment with a customer present."
                    else:
                        scene_specific_details = f"This appears to be an active commercial environment with {person_count} people present."
                elif 'residential' in attributes and scene_type in ['living_room', 'bedroom', 'kitchen']:
                    scene_specific_details = "The setting suggests a comfortable residential living space."
                elif 'workplace' in attributes and any(object_statistics.get(obj, {}).get('count', 0) > 0
                                                    for obj in ['laptop', 'keyboard', 'monitor']):
                    scene_specific_details = "The environment indicates an active workspace or office setting."
            else:
                # Fallback to original logic if object_statistics not available
                if 'commercial' in attributes and any(obj['class_name'] in ['person', 'chair', 'table'] for obj in detected_objects):
                    scene_specific_details = "This appears to be an active commercial environment with customer activity."
                elif 'residential' in attributes and scene_type in ['living_room', 'bedroom', 'kitchen']:
                    scene_specific_details = "The setting suggests a comfortable residential living space."
                elif 'workplace' in attributes and any(obj['class_name'] in ['laptop', 'keyboard', 'monitor'] for obj in detected_objects):
                    scene_specific_details = "The environment indicates an active workspace or office setting."

        # Determine scene description approach
        is_confident_specific_scene = scene_type not in everyday_scene_types and scene_type in scene_templates
        treat_as_everyday = scene_type in everyday_scene_types

        if hasattr(self, 'enable_landmark') and not self.enable_landmark:
            if scene_type not in ["kitchen", "bedroom", "living_room", "office_workspace", "dining_area", "professional_kitchen"]:
                treat_as_everyday = True

        if treat_as_everyday or not is_confident_specific_scene:
            # Generate dynamic description for everyday scenes with object statistics
            self.logger.info(f"Generating dynamic description for scene_type: {scene_type}")
            scene_details = self._generate_dynamic_everyday_description(
                detected_objects,
                lighting_info,
                viewpoint,
                spatial_analysis,
                image_dimensions,
                places365_info,
                object_statistics  # Pass object statistics to dynamic description
            )
        elif scene_type in scene_templates:
            # Use template-based description with enhanced object information
            self.logger.info(f"Using template for scene_type: {scene_type}")
            viewpoint_key = f"{scene_type}_{viewpoint}"
            templates_list = scene_templates.get(viewpoint_key, scene_templates.get(scene_type, []))

            if templates_list:
                detail_template = random.choice(templates_list)
                scene_details = self._fill_detail_template(
                    detail_template,
                    detected_objects,
                    scene_type,
                    places365_info,
                    object_statistics  # Pass object statistics to template filling
                )
            else:
                scene_details = self._generate_dynamic_everyday_description(
                    detected_objects, lighting_info, viewpoint, spatial_analysis,
                    image_dimensions, places365_info, object_statistics
                )
        else:
            # Fallback to dynamic description with object statistics
            self.logger.info(f"No specific template for {scene_type}, generating dynamic description.")
            scene_details = self._generate_dynamic_everyday_description(
                detected_objects, lighting_info, viewpoint, spatial_analysis,
                image_dimensions, places365_info, object_statistics
            )

        # Filter out landmark references if landmark detection is disabled
        if hasattr(self, 'enable_landmark') and not self.enable_landmark:
            scene_details = self.filter_landmark_references(scene_details, enable_landmark=False)

        return scene_details if scene_details else "A scene with some visual elements."

    def _fill_detail_template(self, template: str, detected_objects: List[Dict], scene_type: str, places365_info: Optional[Dict] = None, object_statistics: Optional[Dict] = None) -> str:
        """
        Fill a template with specific details based on detected objects.

        Args:
            template: Template string with placeholders
            detected_objects: List of detected objects
            scene_type: Identified scene type

        Returns:
            str: Filled template
        """
        # Find placeholders in the template using simple {placeholder} syntax
        import re
        placeholders = re.findall(r'\{([^}]+)\}', template)

        filled_template = template

        # Get object template fillers
        fillers = self.templates.get("object_template_fillers", {})

        # 基於物品的統計資訊形成更準確的模板填充內容
        statistics_based_replacements = {}
        if object_statistics:
            # 根據統計信息生成具體的物體描述
            for class_name, stats in object_statistics.items():
                count = stats.get("count", 0)
                if count > 0:
                    # 為常見物體類別生成基於統計的描述
                    if class_name == "potted plant":
                        if count == 1:
                            statistics_based_replacements["plant_elements"] = "a potted plant"
                        elif count <= 3:
                            statistics_based_replacements["plant_elements"] = f"{count} potted plants"
                        else:
                            statistics_based_replacements["plant_elements"] = f"multiple potted plants ({count} total)"

                    elif class_name == "chair":
                        if count == 1:
                            statistics_based_replacements["seating"] = "a chair"
                        elif count <= 4:
                            statistics_based_replacements["seating"] = f"{count} chairs"
                        else:
                            statistics_based_replacements["seating"] = f"numerous chairs ({count} total)"

                    elif class_name == "person":
                        if count == 1:
                            statistics_based_replacements["people_and_vehicles"] = "a person"
                            statistics_based_replacements["pedestrian_flow"] = "an individual walking"
                        elif count <= 5:
                            statistics_based_replacements["people_and_vehicles"] = f"{count} people"
                            statistics_based_replacements["pedestrian_flow"] = f"{count} people walking"
                        else:
                            statistics_based_replacements["people_and_vehicles"] = f"many people ({count} individuals)"
                            statistics_based_replacements["pedestrian_flow"] = f"a crowd of {count} people"

        # 為所有可能的變數設置默認值
        default_replacements = {
            # 室內相關
            "furniture": "various furniture pieces",
            "seating": "comfortable seating",
            "electronics": "entertainment devices",
            "bed_type": "a bed",
            "bed_location": "room",
            "bed_description": "sleeping arrangements",
            "extras": "personal items",
            "table_setup": "a dining table and chairs",
            "table_description": "a dining surface",
            "dining_items": "dining furniture and tableware",
            "appliances": "kitchen appliances",
            "kitchen_items": "cooking utensils and dishware",
            "cooking_equipment": "cooking equipment",
            "office_equipment": "work-related furniture and devices",
            "desk_setup": "a desk and chair",
            "computer_equipment": "electronic devices",

            # 室外/城市相關
            "traffic_description": "vehicles and pedestrians",
            "people_and_vehicles": "people and various vehicles",
            "street_elements": "urban infrastructure",
            "park_features": "benches and greenery",
            "outdoor_elements": "natural features",
            "park_description": "outdoor amenities",
            "store_elements": "merchandise displays",
            "shopping_activity": "customers browse and shop",
            "store_items": "products for sale",

            # 高級餐廳相關
            "design_elements": "elegant decor",
            "lighting": "stylish lighting fixtures",

            # 亞洲商業街相關
            "storefront_features": "compact shops",
            "pedestrian_flow": "people walking",
            "asian_elements": "distinctive cultural elements",
            "cultural_elements": "traditional design features",
            "signage": "colorful signs",
            "street_activities": "busy urban activity",

            # 金融區相關
            "buildings": "tall buildings",
            "traffic_elements": "vehicles",
            "skyscrapers": "high-rise buildings",
            "road_features": "wide streets",
            "architectural_elements": "modern architecture",
            "city_landmarks": "prominent structures",

            # 十字路口相關
            "crossing_pattern": "marked pedestrian crossings",
            "pedestrian_behavior": "careful walking",
            "pedestrian_density": "groups of pedestrians",
            "traffic_pattern": "regulated traffic flow",

            # 交通樞紐相關
            "transit_vehicles": "public transportation vehicles",
            "passenger_activity": "commuter movement",
            "transportation_modes": "various transit options",
            "passenger_needs": "waiting areas",
            "transit_infrastructure": "transit facilities",
            "passenger_movement": "commuter flow",

            # 購物區相關
            "retail_elements": "shops and displays",
            "store_types": "various retail establishments",
            "walkway_features": "pedestrian pathways",
            "commercial_signage": "store signs",
            "consumer_behavior": "shopping activities",

            # 空中視角相關
            "commercial_layout": "organized retail areas",
            "pedestrian_pattern": "people movement patterns",
            "gathering_features": "public gathering spaces",
            "movement_pattern": "crowd flow patterns",
            "urban_elements": "city infrastructure",
            "public_activity": "social interaction",

            # 文化特定元素
            "stall_elements": "vendor booths",
            "lighting_features": "decorative lights",
            "food_elements": "food offerings",
            "vendor_stalls": "market stalls",
            "nighttime_activity": "evening commerce",
            "cultural_lighting": "traditional lighting",
            "night_market_sounds": "lively market sounds",
            "evening_crowd_behavior": "nighttime social activity",
            "architectural_elements": "cultural buildings",
            "religious_structures": "sacred buildings",
            "decorative_features": "ornamental designs",
            "cultural_practices": "traditional activities",
            "temple_architecture": "religious structures",
            "sensory_elements": "atmospheric elements",
            "visitor_activities": "cultural experiences",
            "ritual_activities": "ceremonial practices",
            "cultural_symbols": "meaningful symbols",
            "architectural_style": "historical buildings",
            "historic_elements": "traditional architecture",
            "urban_design": "city planning elements",
            "social_behaviors": "public interactions",
            "european_features": "European architectural details",
            "tourist_activities": "visitor activities",
            "local_customs": "regional practices",

            # 時間特定元素
            "lighting_effects": "artificial lighting",
            "shadow_patterns": "light and shadow",
            "urban_features": "city elements",
            "illuminated_elements": "lit structures",
            "evening_activities": "nighttime activities",
            "light_sources": "lighting points",
            "lit_areas": "illuminated spaces",
            "shadowed_zones": "darker areas",
            "illuminated_signage": "bright signs",
            "colorful_lighting": "multicolored lights",
            "neon_elements": "neon signs",
            "night_crowd_behavior": "evening social patterns",
            "light_displays": "lighting installations",
            "building_features": "architectural elements",
            "nightlife_activities": "evening entertainment",
            "lighting_modifier": "bright",

            # 混合環境元素
            "transitional_elements": "connecting features",
            "indoor_features": "interior elements",
            "outdoor_setting": "exterior spaces",
            "interior_amenities": "inside comforts",
            "exterior_features": "outside elements",
            "inside_elements": "interior design",
            "outside_spaces": "outdoor areas",
            "dual_environment_benefits": "combined settings",
            "passenger_activities": "waiting behaviors",
            "transportation_types": "transit vehicles",
            "sheltered_elements": "covered areas",
            "exposed_areas": "open sections",
            "waiting_behaviors": "passenger activities",
            "indoor_facilities": "inside services",
            "platform_features": "transit platform elements",
            "transit_routines": "transportation procedures",

            # 專門場所元素
            "seating_arrangement": "spectator seating",
            "playing_surface": "athletic field",
            "sporting_activities": "sports events",
            "spectator_facilities": "viewer accommodations",
            "competition_space": "sports arena",
            "sports_events": "athletic competitions",
            "viewing_areas": "audience sections",
            "field_elements": "field markings and equipment",
            "game_activities": "competitive play",
            "construction_equipment": "building machinery",
            "building_materials": "construction supplies",
            "construction_activities": "building work",
            "work_elements": "construction tools",
            "structural_components": "building structures",
            "site_equipment": "construction gear",
            "raw_materials": "building supplies",
            "construction_process": "building phases",
            "medical_elements": "healthcare equipment",
            "clinical_activities": "medical procedures",
            "facility_design": "healthcare layout",
            "healthcare_features": "medical facilities",
            "patient_interactions": "care activities",
            "equipment_types": "medical devices",
            "care_procedures": "health services",
            "treatment_spaces": "clinical areas",
            "educational_furniture": "learning furniture",
            "learning_activities": "educational practices",
            "instructional_design": "teaching layout",
            "classroom_elements": "school equipment",
            "teaching_methods": "educational approaches",
            "student_engagement": "learning participation",
            "learning_spaces": "educational areas",
            "educational_tools": "teaching resources",
            "knowledge_transfer": "learning exchanges"
        }

        # 將統計的資訊形成的替換內容合併到默認替換中
        default_replacements.update(statistics_based_replacements)

        # Add Places365-specific template variables
        places365_scene_context = ""
        places365_atmosphere = ""

        if places365_info and places365_info.get('confidence', 0) > 0.35:
            scene_label = places365_info.get('scene_label', '').replace('_', ' ')
            attributes = places365_info.get('attributes', [])

            if scene_label and scene_label != scene_type:
                places365_scene_context = f"characteristic of a {scene_label}"

            if 'natural_lighting' in attributes:
                places365_atmosphere = "with natural illumination"
            elif 'artificial_lighting' in attributes:
                places365_atmosphere = "under artificial lighting"

        # Update default_replacements with Places365 context
        if places365_scene_context:
            default_replacements["places365_context"] = places365_scene_context
        else:
            default_replacements["places365_context"] = ""

        if places365_atmosphere:
            default_replacements["places365_atmosphere"] = places365_atmosphere
        else:
            default_replacements["places365_atmosphere"] = ""

        # For each placeholder, try to fill with appropriate content
        for placeholder in placeholders:
            if placeholder in fillers:
                # Get random filler for this placeholder
                options = fillers[placeholder]
                if options:
                    # Select 1-3 items from the options list
                    num_items = min(len(options), random.randint(1, 3))
                    selected_items = random.sample(options, num_items)

                    # Create a formatted list
                    if len(selected_items) == 1:
                        replacement = selected_items[0]
                    elif len(selected_items) == 2:
                        replacement = f"{selected_items[0]} and {selected_items[1]}"
                    else:
                        replacement = ", ".join(selected_items[:-1]) + f", and {selected_items[-1]}"

                    # Replace the placeholder
                    filled_template = filled_template.replace(f"{{{placeholder}}}", replacement)
            else:
                # Try to fill with scene-specific logic
                replacement = self._generate_placeholder_content(placeholder, detected_objects, scene_type)
                if replacement:
                    filled_template = filled_template.replace(f"{{{placeholder}}}", replacement)
                elif placeholder in default_replacements:
                    # Use default replacement if available
                    filled_template = filled_template.replace(f"{{{placeholder}}}", default_replacements[placeholder])
                else:
                    # Last resort default
                    filled_template = filled_template.replace(f"{{{placeholder}}}", "various items")

        return filled_template

    def _generate_placeholder_content(self, placeholder: str, detected_objects: List[Dict], scene_type: str) -> str:
        """
        Generate content for a template placeholder based on scene-specific logic.

        Args:
            placeholder: Template placeholder
            detected_objects: List of detected objects
            scene_type: Identified scene type

        Returns:
            str: Content for the placeholder
        """
        # Handle different types of placeholders with custom logic
        if placeholder == "furniture":
            # Extract furniture items
            furniture_ids = [56, 57, 58, 59, 60, 61]  # Example furniture IDs
            furniture_objects = [obj for obj in detected_objects if obj["class_id"] in furniture_ids]

            if furniture_objects:
                furniture_names = [obj["class_name"] for obj in furniture_objects[:3]]
                return ", ".join(set(furniture_names))
            return "various furniture items"

        elif placeholder == "electronics":
            # Extract electronic items
            electronics_ids = [62, 63, 64, 65, 66, 67, 68, 69, 70]  # Example electronics IDs
            electronics_objects = [obj for obj in detected_objects if obj["class_id"] in electronics_ids]

            if electronics_objects:
                electronics_names = [obj["class_name"] for obj in electronics_objects[:3]]
                return ", ".join(set(electronics_names))
            return "electronic devices"

        elif placeholder == "people_count":
            # Count people
            people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])

            if people_count == 0:
                return "no people"
            elif people_count == 1:
                return "one person"
            elif people_count < 5:
                return f"{people_count} people"
            else:
                return "several people"

        elif placeholder == "seating":
            # Extract seating items
            seating_ids = [56, 57]  # chair, sofa
            seating_objects = [obj for obj in detected_objects if obj["class_id"] in seating_ids]

            if seating_objects:
                seating_names = [obj["class_name"] for obj in seating_objects[:2]]
                return ", ".join(set(seating_names))
            return "seating arrangements"

        # Default case - empty string
        return ""

    def _generate_basic_details(self, scene_type: str, detected_objects: List[Dict]) -> str:
        """
        Generate basic details when templates aren't available.

        Args:
            scene_type: Identified scene type
            detected_objects: List of detected objects

        Returns:
            str: Basic scene details
        """
        # Handle specific scene types with custom logic
        if scene_type == "living_room":
            tv_objs = [obj for obj in detected_objects if obj["class_id"] == 62]  # TV
            sofa_objs = [obj for obj in detected_objects if obj["class_id"] == 57]  # Sofa

            if tv_objs and sofa_objs:
                tv_region = tv_objs[0]["region"]
                sofa_region = sofa_objs[0]["region"]

                arrangement = f"The TV is in the {tv_region.replace('_', ' ')} of the image, "
                arrangement += f"while the sofa is in the {sofa_region.replace('_', ' ')}. "

                return f"{arrangement}This appears to be a space designed for relaxation and entertainment."

        elif scene_type == "bedroom":
            bed_objs = [obj for obj in detected_objects if obj["class_id"] == 59]  # Bed

            if bed_objs:
                bed_region = bed_objs[0]["region"]
                extra_items = []

                for obj in detected_objects:
                    if obj["class_id"] == 74:  # Clock
                        extra_items.append("clock")
                    elif obj["class_id"] == 73:  # Book
                        extra_items.append("book")

                extras = ""
                if extra_items:
                    extras = f" There is also a {' and a '.join(extra_items)} visible."

                return f"The bed is located in the {bed_region.replace('_', ' ')} of the image.{extras}"

        elif scene_type in ["dining_area", "kitchen"]:
            # Count food and dining-related items
            food_items = []
            for obj in detected_objects:
                if obj["class_id"] in [39, 41, 42, 43, 44, 45]:  # Kitchen items
                    food_items.append(obj["class_name"])

            food_str = ""
            if food_items:
                unique_items = list(set(food_items))
                if len(unique_items) <= 3:
                    food_str = f" with {', '.join(unique_items)}"
                else:
                    food_str = f" with {', '.join(unique_items[:3])} and other items"

            return f"{food_str}."

        elif scene_type == "city_street":
            # Count people and vehicles
            people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])
            vehicle_count = len([obj for obj in detected_objects
                               if obj["class_id"] in [1, 2, 3, 5, 7]])  # Bicycle, car, motorbike, bus, truck

            traffic_desc = ""
            if people_count > 0 and vehicle_count > 0:
                traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'} and "
                traffic_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
            elif people_count > 0:
                traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'}"
            elif vehicle_count > 0:
                traffic_desc = f" with {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"

            return f"{traffic_desc}."

        # Handle more specialized scenes
        elif scene_type == "asian_commercial_street":
            # Look for key urban elements
            people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])
            vehicle_count = len([obj for obj in detected_objects if obj["class_id"] in [1, 2, 3]])

            # Analyze pedestrian distribution
            people_positions = []
            for obj in detected_objects:
                if obj["class_id"] == 0:  # Person
                    people_positions.append(obj["normalized_center"])

            # Check if people are distributed along a line (indicating a walking path)
            structured_path = False
            if len(people_positions) >= 3:
                # Simplified check - see if y-coordinates are similar for multiple people
                y_coords = [pos[1] for pos in people_positions]
                y_mean = sum(y_coords) / len(y_coords)
                y_variance = sum((y - y_mean)**2 for y in y_coords) / len(y_coords)
                if y_variance < 0.05:  # Low variance indicates linear arrangement
                    structured_path = True

            street_desc = "A commercial street with "
            if people_count > 0:
                street_desc += f"{people_count} {'pedestrians' if people_count > 1 else 'pedestrian'}"
                if vehicle_count > 0:
                    street_desc += f" and {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
            elif vehicle_count > 0:
                street_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
            else:
                street_desc += "various commercial elements"

            if structured_path:
                street_desc += ". The pedestrians appear to be following a defined walking path"

            # Add cultural elements
            street_desc += ". The signage and architectural elements suggest an Asian urban setting."

            return street_desc

        # Default general description
        return "The scene contains various elements characteristic of this environment."

    def _detect_viewpoint(self, detected_objects: List[Dict]) -> str:
        """
        改進視角檢測,特別加強對空中俯視視角的識別。

        Args:
            detected_objects: 檢測到的物體列表

        Returns:
            str: 檢測到的視角類型
        """
        if not detected_objects:
            return "eye_level"  # default

        # extract space and size
        top_region_count = 0
        bottom_region_count = 0
        total_objects = len(detected_objects)

        # 追蹤大小分布以檢測空中視角
        sizes = []

        # 垂直大小比例用於低角度檢測
        height_width_ratios = []

        # 用於檢測規則圖案的變數
        people_positions = []
        crosswalk_pattern_detected = False

        for obj in detected_objects:
            # 計算頂部or底部區域中的物體
            region = obj["region"]
            if "top" in region:
                top_region_count += 1
            elif "bottom" in region:
                bottom_region_count += 1

            # 計算標準化大小(Area)
            if "normalized_area" in obj:
                sizes.append(obj["normalized_area"])

            # 計算高度or寬度比例
            if "normalized_size" in obj:
                width, height = obj["normalized_size"]
                if width > 0:
                    height_width_ratios.append(height / width)

            # 收集人的位置
            if obj["class_id"] == 0:  # 人
                if "normalized_center" in obj:
                    people_positions.append(obj["normalized_center"])

        # 專門為斑馬線的十字路口添加檢測邏輯
        # 檢查是否有明顯的垂直和水平行人分布
        people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]  # 人

        if len(people_objs) >= 8:  # 需要足夠多的人才能形成十字路口模式
            # 檢查是否有斑馬線模式 - 新增功能
            if len(people_positions) >= 4:
                # 對位置進行聚類分析,尋找線性分布
                x_coords = [pos[0] for pos in people_positions]
                y_coords = [pos[1] for pos in people_positions]

                # 計算 x 和 y 坐標的變異數和範圍
                x_variance = np.var(x_coords) if len(x_coords) > 1 else 0
                y_variance = np.var(y_coords) if len(y_coords) > 1 else 0

                x_range = max(x_coords) - min(x_coords)
                y_range = max(y_coords) - min(y_coords)

                # 嘗試檢測十字形分布
                # 如果 x 和 y 方向都有較大範圍,且範圍相似,就有可能是十字路口
                if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3:

                    # 計算到中心點的距離
                    center_x = np.mean(x_coords)
                    center_y = np.mean(y_coords)

                    # 將點映射到十字架的軸上(水平和垂直)
                    x_axis_distance = [abs(x - center_x) for x in x_coords]
                    y_axis_distance = [abs(y - center_y) for y in y_coords]

                    # 點應該接近軸線(水平或垂直)
                    # 對於每個點,檢查它是否接近水平或垂直軸線
                    close_to_axis_count = 0
                    for i in range(len(x_coords)):
                        if x_axis_distance[i] < 0.1 or y_axis_distance[i] < 0.1:
                            close_to_axis_count += 1

                    # 如果足夠多的點接近軸線,認為是十字路口
                    if close_to_axis_count >= len(x_coords) * 0.6:
                        crosswalk_pattern_detected = True

                # 如果沒有檢測到十字形,嘗試檢測線性聚類分布
                if not crosswalk_pattern_detected:
                    # 檢查 x 和 y 方向的聚類
                    x_clusters = self._detect_linear_clusters(x_coords)
                    y_clusters = self._detect_linear_clusters(y_coords)

                    # 如果在 x 和 y 方向上都有多個聚類,可能是交叉的斑馬線
                    if len(x_clusters) >= 2 and len(y_clusters) >= 2:
                        crosswalk_pattern_detected = True

        # 檢測斑馬線模式 - 優先判斷
        if crosswalk_pattern_detected:
            return "aerial"

        # 檢測行人分布情況
        if len(people_objs) >= 10:
            people_region_counts = {}
            for obj in people_objs:
                region = obj["region"]
                if region not in people_region_counts:
                    people_region_counts[region] = 0
                people_region_counts[region] += 1

            # 計算不同區域中的行人數量
            region_count = len([r for r, c in people_region_counts.items() if c >= 2])

            # 如果行人分布在多個區域中,可能是空中視角
            if region_count >= 4:
                # 檢查行人分布的模式
                # 特別是檢查不同區域中行人數量的差異
                region_counts = list(people_region_counts.values())
                region_counts_variance = np.var(region_counts) if len(region_counts) > 1 else 0
                region_counts_mean = np.mean(region_counts) if region_counts else 0

                # 如果行人分布較為均勻(變異係數小),可能是空中視角
                if region_counts_mean > 0:
                    variation_coefficient = region_counts_variance / region_counts_mean
                    if variation_coefficient < 0.5:
                        return "aerial"

        # 計算指標
        top_ratio = top_region_count / total_objects if total_objects > 0 else 0
        bottom_ratio = bottom_region_count / total_objects if total_objects > 0 else 0

        # 大小變異數(標準化)
        size_variance = 0
        if sizes:
            mean_size = sum(sizes) / len(sizes)
            size_variance = sum((s - mean_size) ** 2 for s in sizes) / len(sizes)
            size_variance = size_variance / (mean_size ** 2)  # 標準化

        # 平均高度/寬度比例
        avg_height_width_ratio = sum(height_width_ratios) / len(height_width_ratios) if height_width_ratios else 1.0

        # 空中視角:低大小差異,物體均勻分布,底部很少或沒有物體
        if (size_variance < self.viewpoint_params["aerial_size_variance_threshold"] and
            bottom_ratio < 0.3 and top_ratio > self.viewpoint_params["aerial_threshold"]):
            return "aerial"

        # 低角度視角:物體傾向於比寬高,頂部較多物體
        elif (avg_height_width_ratio > self.viewpoint_params["vertical_size_ratio_threshold"] and
            top_ratio > self.viewpoint_params["low_angle_threshold"]):
            return "low_angle"

        # 高視角:底部較多物體,頂部較少
        elif (bottom_ratio > self.viewpoint_params["elevated_threshold"] and
            top_ratio < self.viewpoint_params["elevated_top_threshold"]):
            return "elevated"

        # 默認:平視角
        return "eye_level"

    def _detect_linear_clusters(self, coords, threshold=0.05):
        """
        檢測坐標中的線性聚類

        Args:
            coords: 一維坐標列表
            threshold: 聚類閾值

        Returns:
            list: 聚類列表
        """
        if not coords:
            return []

        # 排序坐標
        sorted_coords = sorted(coords)

        clusters = []
        current_cluster = [sorted_coords[0]]

        for i in range(1, len(sorted_coords)):
            # 如果當前坐標與前一個接近,添加到當前聚類
            if sorted_coords[i] - sorted_coords[i-1] < threshold:
                current_cluster.append(sorted_coords[i])
            else:
                # 否則開始新的聚類
                if len(current_cluster) >= 2:  # 至少需要2個點形成聚類
                    clusters.append(current_cluster)
                current_cluster = [sorted_coords[i]]

        # 添加最後一個cluster
        if len(current_cluster) >= 2:
            clusters.append(current_cluster)

        return clusters

    def _detect_cultural_context(self, scene_type: str, detected_objects: List[Dict]) -> Optional[str]:
        """
        Detect the likely cultural context of the scene.

        Args:
            scene_type: Identified scene type
            detected_objects: List of detected objects

        Returns:
            Optional[str]: Detected cultural context (asian, european, etc.) or None
        """
        # Scene types with explicit cultural contexts
        cultural_scene_mapping = {
            "asian_commercial_street": "asian",
            "asian_night_market": "asian",
            "asian_temple_area": "asian",
            "european_plaza": "european"
        }

        # Check if scene type directly indicates cultural context
        if scene_type in cultural_scene_mapping:
            return cultural_scene_mapping[scene_type]

        # No specific cultural context detected
        return None

    def _generate_cultural_elements(self, cultural_context: str) -> str:
        """
        Generate description of cultural elements for the detected context.

        Args:
            cultural_context: Detected cultural context

        Returns:
            str: Description of cultural elements
        """
        # Get template for this cultural context
        cultural_templates = self.templates.get("cultural_templates", {})

        if cultural_context in cultural_templates:
            template = cultural_templates[cultural_context]
            elements = template.get("elements", [])

            if elements:
                # Select 1-2 random elements
                num_elements = min(len(elements), random.randint(1, 2))
                selected_elements = random.sample(elements, num_elements)

                # Format elements list
                elements_text = " and ".join(selected_elements) if num_elements == 2 else selected_elements[0]

                # Fill template
                return template.get("description", "").format(elements=elements_text)

        return ""

    def _optimize_object_description(self, description: str) -> str:
        """
        優化物品描述,避免重複列舉相同物品
        """
        import re

        # 處理床鋪重複描述
        if "bed in the room" in description:
            description = description.replace("a bed in the room", "a bed")

        # 處理重複的物品列表
        object_lists = re.findall(r'with ([^\.]+?)(?:\.|\band\b)', description)

        for obj_list in object_lists:
            # 計算每個物品出現次數
            items = re.findall(r'([a-zA-Z\s]+)(?:,|\band\b|$)', obj_list)
            item_counts = {}

            for item in items:
                item = item.strip()
                if item and item not in ["and", "with"]:
                    if item not in item_counts:
                        item_counts[item] = 0
                    item_counts[item] += 1

            # 生成優化後的物品列表
            if item_counts:
                new_items = []
                for item, count in item_counts.items():
                    if count > 1:
                        new_items.append(f"{count} {item}s")
                    else:
                        new_items.append(item)

                # 格式化新列表
                if len(new_items) == 1:
                    new_list = new_items[0]
                elif len(new_items) == 2:
                    new_list = f"{new_items[0]} and {new_items[1]}"
                else:
                    new_list = ", ".join(new_items[:-1]) + f", and {new_items[-1]}"

                # 替換原始列表
                description = description.replace(obj_list, new_list)

        return description

    def _describe_functional_zones(self, functional_zones: Dict) -> str:
        """
        生成場景功能區域的描述,優化處理行人區域、人數統計和物品重複問題。

        Args:
            functional_zones: 識別出的功能區域字典

        Returns:
            str: 功能區域描述
        """
        if not functional_zones:
            return ""

        # 處理不同類型的 functional_zones 參數
        if isinstance(functional_zones, list):
            # 如果是列表,轉換為字典格式
            zones_dict = {}
            for i, zone in enumerate(functional_zones):
                if isinstance(zone, dict) and 'name' in zone:
                    zone_name = zone['name']
                else:
                    zone_name = f"zone_{i}"
                zones_dict[zone_name] = zone if isinstance(zone, dict) else {"description": str(zone)}
            functional_zones = zones_dict
        elif not isinstance(functional_zones, dict):
            return ""

        # 計算場景中的總人數
        total_people_count = 0
        people_by_zone = {}

        # 計算每個區域的人數並累計總人數
        for zone_name, zone_info in functional_zones.items():
            if "objects" in zone_info:
                zone_people_count = zone_info["objects"].count("person")
                people_by_zone[zone_name] = zone_people_count
                total_people_count += zone_people_count

        # 分類區域為行人區域和其他區域
        pedestrian_zones = []
        other_zones = []

        for zone_name, zone_info in functional_zones.items():
            # 檢查是否是行人相關區域
            if any(keyword in zone_name.lower() for keyword in ["pedestrian", "crossing", "people"]):
                pedestrian_zones.append((zone_name, zone_info))
            else:
                other_zones.append((zone_name, zone_info))

        # 獲取最重要的行人區域和其他區域
        main_pedestrian_zones = sorted(pedestrian_zones,
                                    key=lambda z: people_by_zone.get(z[0], 0),
                                    reverse=True)[:1]  # 最多1個主要行人區域

        top_other_zones = sorted(other_zones,
                            key=lambda z: len(z[1].get("objects", [])),
                            reverse=True)[:2]  # 最多2個其他區域

        # 合併區域
        top_zones = main_pedestrian_zones + top_other_zones

        if not top_zones:
            return ""

        # 生成匯總描述
        summary = ""
        max_mentioned_people = 0  # track已經提到的最大人數

        # 如果總人數顯著且還沒在主描述中提到,添加總人數描述
        if total_people_count > 5:
            summary = f"The scene contains a significant number of pedestrians ({total_people_count} people). "
            max_mentioned_people = total_people_count  # update已提到的最大人數

        # 處理每個區域的描述,確保人數信息的一致性
        processed_zones = []

        for zone_name, zone_info in top_zones:
            zone_desc = zone_info.get("description", "a functional zone")
            zone_people_count = people_by_zone.get(zone_name, 0)

            # 檢查描述中是否包含人數資訊
            contains_people_info = "with" in zone_desc and ("person" in zone_desc.lower() or "people" in zone_desc.lower())

            # 如果描述包含人數信息,且人數較小(小於已提到的最大人數),則修改描述
            if contains_people_info and zone_people_count < max_mentioned_people:
                parts = zone_desc.split("with")
                if len(parts) > 1:
                    # 移除人數部分
                    zone_desc = parts[0].strip() + " area"

            processed_zones.append((zone_name, {"description": zone_desc}))

        # 根據處理後的區域數量生成最終描述
        final_desc = ""

        if len(processed_zones) == 1:
            _, zone_info = processed_zones[0]
            zone_desc = zone_info["description"]
            final_desc = summary + f"The scene includes {zone_desc}."
        elif len(processed_zones) == 2:
            _, zone1_info = processed_zones[0]
            _, zone2_info = processed_zones[1]
            zone1_desc = zone1_info["description"]
            zone2_desc = zone2_info["description"]
            final_desc = summary + f"The scene is divided into two main areas: {zone1_desc} and {zone2_desc}."
        else:
            zones_desc = ["The scene contains multiple functional areas including"]
            zone_descriptions = [z[1]["description"] for z in processed_zones]

            # 格式化最終的多區域描述
            if len(zone_descriptions) == 3:
                formatted_desc = f"{zone_descriptions[0]}, {zone_descriptions[1]}, and {zone_descriptions[2]}"
            else:
                formatted_desc = ", ".join(zone_descriptions[:-1]) + f", and {zone_descriptions[-1]}"

            final_desc = summary + f"{zones_desc[0]} {formatted_desc}."

        return self._optimize_object_description(final_desc)