Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,998 Bytes
01d337c 6be6bee 01d337c 6be6bee 01d337c 6be6bee 01d337c 6be6bee 01d337c 6be6bee 01d337c 6be6bee 01d337c 6be6bee 01d337c 6be6bee 01d337c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import os
import torch
import logging
from typing import Dict, Optional, Any
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from huggingface_hub import login
class ModelLoadingError(Exception):
"""Custom exception for model loading failures"""
pass
class ModelGenerationError(Exception):
"""Custom exception for model generation failures"""
pass
class LLMModelManager:
"""
負責LLM模型的載入、設備管理和文本生成。
管理模型、記憶體優化和設備配置。
"""
def __init__(self,
model_path: Optional[str] = None,
tokenizer_path: Optional[str] = None,
device: Optional[str] = None,
max_length: int = 2048,
temperature: float = 0.3,
top_p: float = 0.85):
"""
初始化模型管理器
Args:
model_path: LLM模型的路徑或HuggingFace模型名稱,默認使用Llama 3.2
tokenizer_path: tokenizer的路徑,通常與model_path相同
device: 運行設備 ('cpu'或'cuda'),None時自動檢測
max_length: 輸入文本的最大長度
temperature: 生成文本的溫度參數
top_p: 生成文本時的核心採樣機率閾值
"""
# 設置專屬logger
self.logger = logging.getLogger(self.__class__.__name__)
if not self.logger.handlers:
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
self.logger.addHandler(handler)
self.logger.setLevel(logging.INFO)
# 模型配置
self.model_path = model_path or "meta-llama/Llama-3.2-3B-Instruct"
self.tokenizer_path = tokenizer_path or self.model_path
# 設備管理
self.device = self._detect_device(device)
self.logger.info(f"Device selected: {self.device}")
# 生成參數
self.max_length = max_length
self.temperature = temperature
self.top_p = top_p
# 模型狀態
self.model = None
self.tokenizer = None
self._model_loaded = False
self.call_count = 0
# HuggingFace認證
self.hf_token = self._setup_huggingface_auth()
def _detect_device(self, device: Optional[str]) -> str:
"""
檢測並設置運行設備
Args:
device: 用戶指定的設備,None時自動檢測
Returns:
str: ('cuda' or 'cpu')
"""
if device:
if device == 'cuda' and not torch.cuda.is_available():
self.logger.warning("CUDA requested but not available, falling back to CPU")
return 'cpu'
return device
detected_device = 'cuda' if torch.cuda.is_available() else 'cpu'
if detected_device == 'cuda':
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
self.logger.info(f"CUDA detected with {gpu_memory:.2f} GB GPU memory")
return detected_device
def _setup_huggingface_auth(self) -> Optional[str]:
"""
設置HuggingFace認證
Returns:
Optional[str]: HuggingFace token,如果可用
"""
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
try:
login(token=hf_token)
self.logger.info("Successfully authenticated with HuggingFace")
return hf_token
except Exception as e:
self.logger.error(f"HuggingFace authentication failed: {e}")
return None
else:
self.logger.warning("HF_TOKEN not found. Access to gated models may be limited")
return None
def _load_model(self):
"""
載入LLM模型和tokenizer,使用8位量化以節省記憶體
Raises:
ModelLoadingError: 當模型載入失敗時
"""
if self._model_loaded:
return
try:
self.logger.info(f"Loading model from {self.model_path} with 8-bit quantization")
# 清理GPU記憶體
self._clear_gpu_cache()
# 設置8位量化配置
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True
)
# 載入tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.tokenizer_path,
padding_side="left",
use_fast=False,
token=self.hf_token
)
# 設置特殊標記
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# 載入模型
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
quantization_config=quantization_config,
device_map="auto",
low_cpu_mem_usage=True,
token=self.hf_token
)
self._model_loaded = True
self.logger.info("Model loaded successfully")
except Exception as e:
error_msg = f"Failed to load model: {str(e)}"
self.logger.error(error_msg)
raise ModelLoadingError(error_msg) from e
def _clear_gpu_cache(self):
"""清理GPU記憶體緩存"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.logger.debug("GPU cache cleared")
def generate_response(self, prompt: str, **generation_kwargs) -> str:
# 確保模型已載入
if not self._model_loaded:
self._load_model()
try:
self.call_count += 1
self.logger.info(f"Generating response (call #{self.call_count})")
# # record input prompt
# self.logger.info(f"DEBUG: Input prompt length: {len(prompt)}")
# self.logger.info(f"DEBUG: Input prompt preview: {prompt[:200]}...")
# clean GPU
self._clear_gpu_cache()
# 設置固定種子以提高一致性
torch.manual_seed(42)
# prepare input
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=self.max_length
).to(self.device)
# 準備生成參數
generation_params = self._prepare_generation_params(**generation_kwargs)
generation_params.update({
"pad_token_id": self.tokenizer.eos_token_id,
"attention_mask": inputs.attention_mask,
"use_cache": True,
})
# response
with torch.no_grad():
outputs = self.model.generate(inputs.input_ids, **generation_params)
# 解碼回應
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# # record whole response
# self.logger.info(f"DEBUG: Full LLM response: {full_response}")
response = self._extract_generated_response(full_response, prompt)
# # 記錄提取後的回應
# self.logger.info(f"DEBUG: Extracted response: {response}")
if not response or len(response.strip()) < 10:
raise ModelGenerationError("Generated response is too short or empty")
self.logger.info(f"Response generated successfully ({len(response)} characters)")
return response
except Exception as e:
error_msg = f"Text generation failed: {str(e)}"
self.logger.error(error_msg)
raise ModelGenerationError(error_msg) from e
def _prepare_generation_params(self, **kwargs) -> Dict[str, Any]:
"""
準備生成參數,支援模型特定的優化
Args:
**kwargs: 用戶提供的生成參數
Returns:
Dict[str, Any]: 完整的生成參數配置
"""
# basic parameters
params = {
"max_new_tokens": 120,
"temperature": self.temperature,
"top_p": self.top_p,
"do_sample": True,
}
# 針對Llama模型的特殊優化
if "llama" in self.model_path.lower():
params.update({
"max_new_tokens": 600,
"temperature": 0.35, # not too big
"top_p": 0.75,
"repetition_penalty": 1.5,
"num_beams": 5,
"length_penalty": 1,
"no_repeat_ngram_size": 3
})
else:
params.update({
"max_new_tokens": 300,
"temperature": 0.6,
"top_p": 0.9,
"num_beams": 1,
"repetition_penalty": 1.05
})
# 用戶參數覆蓋預設值
params.update(kwargs)
return params
def _extract_generated_response(self, full_response: str, prompt: str) -> str:
"""
從完整回應中提取生成的部分
"""
# 尋找assistant標記
assistant_tag = "<|assistant|>"
if assistant_tag in full_response:
response = full_response.split(assistant_tag)[-1].strip()
# 檢查是否有未閉合的user標記
user_tag = "<|user|>"
if user_tag in response:
response = response.split(user_tag)[0].strip()
else:
# 移除輸入提示詞
if full_response.startswith(prompt):
response = full_response[len(prompt):].strip()
else:
response = full_response.strip()
# 移除不自然的場景類型前綴
response = self._remove_scene_type_prefixes(response)
return response
def _remove_scene_type_prefixes(self, response: str) -> str:
"""
移除LLM生成回應中的場景類型前綴
Args:
response: 原始LLM回應
Returns:
str: 移除前綴後的回應
"""
if not response:
return response
prefix_patterns = [r'^[A-Za-z]+\,\s*']
# 應用清理模式
for pattern in prefix_patterns:
response = re.sub(pattern, '', response, flags=re.IGNORECASE)
# 確保首字母大寫
if response and response[0].islower():
response = response[0].upper() + response[1:]
return response.strip()
def reset_context(self):
"""重置模型上下文,清理GPU緩存"""
if self._model_loaded:
self._clear_gpu_cache()
self.logger.info("Model context reset")
else:
self.logger.info("Model not loaded, no context to reset")
def get_current_device(self) -> str:
"""
獲取當前運行設備
Returns:
str: 當前設備名稱
"""
return self.device
def is_model_loaded(self) -> bool:
"""
檢查模型是否已載入
Returns:
bool: 模型載入狀態
"""
return self._model_loaded
def get_call_count(self) -> int:
"""
獲取模型調用次數
Returns:
int: 調用次數
"""
return self.call_count
def get_model_info(self) -> Dict[str, Any]:
"""
獲取模型信息
Returns:
Dict[str, Any]: 包含模型路徑、設備、載入狀態等信息
"""
return {
"model_path": self.model_path,
"device": self.device,
"is_loaded": self._model_loaded,
"call_count": self.call_count,
"has_hf_token": self.hf_token is not None
}
|