VisionScout / model_manager.py
DawnC's picture
Upload 59 files
e6a18b7 verified
raw
history blame
11.2 kB
import os
import torch
import logging
from typing import Dict, Optional, Any
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from huggingface_hub import login
class ModelLoadingError(Exception):
"""Custom exception for model loading failures"""
pass
class ModelGenerationError(Exception):
"""Custom exception for model generation failures"""
pass
class ModelManager:
"""
負責LLM模型的載入、設備管理和文本生成。
管理模型、記憶體優化和設備配置。
"""
def __init__(self,
model_path: Optional[str] = None,
tokenizer_path: Optional[str] = None,
device: Optional[str] = None,
max_length: int = 2048,
temperature: float = 0.3,
top_p: float = 0.85):
"""
初始化模型管理器
Args:
model_path: LLM模型的路徑或HuggingFace模型名稱,默認使用Llama 3.2
tokenizer_path: tokenizer的路徑,通常與model_path相同
device: 運行設備 ('cpu'或'cuda'),None時自動檢測
max_length: 輸入文本的最大長度
temperature: 生成文本的溫度參數
top_p: 生成文本時的核心採樣機率閾值
"""
# 設置專屬logger
self.logger = logging.getLogger(self.__class__.__name__)
if not self.logger.handlers:
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
self.logger.addHandler(handler)
self.logger.setLevel(logging.INFO)
# 模型配置
self.model_path = model_path or "meta-llama/Llama-3.2-3B-Instruct"
self.tokenizer_path = tokenizer_path or self.model_path
# 設備管理
self.device = self._detect_device(device)
self.logger.info(f"Device selected: {self.device}")
# 生成參數
self.max_length = max_length
self.temperature = temperature
self.top_p = top_p
# 模型狀態
self.model = None
self.tokenizer = None
self._model_loaded = False
self.call_count = 0
# HuggingFace認證
self.hf_token = self._setup_huggingface_auth()
def _detect_device(self, device: Optional[str]) -> str:
"""
檢測並設置運行設備
Args:
device: 用戶指定的設備,None時自動檢測
Returns:
str: ('cuda' or 'cpu')
"""
if device:
if device == 'cuda' and not torch.cuda.is_available():
self.logger.warning("CUDA requested but not available, falling back to CPU")
return 'cpu'
return device
detected_device = 'cuda' if torch.cuda.is_available() else 'cpu'
if detected_device == 'cuda':
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
self.logger.info(f"CUDA detected with {gpu_memory:.2f} GB GPU memory")
return detected_device
def _setup_huggingface_auth(self) -> Optional[str]:
"""
設置HuggingFace認證
Returns:
Optional[str]: HuggingFace token,如果可用
"""
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
try:
login(token=hf_token)
self.logger.info("Successfully authenticated with HuggingFace")
return hf_token
except Exception as e:
self.logger.error(f"HuggingFace authentication failed: {e}")
return None
else:
self.logger.warning("HF_TOKEN not found. Access to gated models may be limited")
return None
def _load_model(self):
"""
載入LLM模型和tokenizer,使用8位量化以節省記憶體
Raises:
ModelLoadingError: 當模型載入失敗時
"""
if self._model_loaded:
return
try:
self.logger.info(f"Loading model from {self.model_path} with 8-bit quantization")
# 清理GPU記憶體
self._clear_gpu_cache()
# 設置8位量化配置
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True
)
# 載入tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.tokenizer_path,
padding_side="left",
use_fast=False,
token=self.hf_token
)
# 設置特殊標記
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# 載入模型
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
quantization_config=quantization_config,
device_map="auto",
low_cpu_mem_usage=True,
token=self.hf_token
)
self._model_loaded = True
self.logger.info("Model loaded successfully")
except Exception as e:
error_msg = f"Failed to load model: {str(e)}"
self.logger.error(error_msg)
raise ModelLoadingError(error_msg) from e
def _clear_gpu_cache(self):
"""清理GPU記憶體緩存"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.logger.debug("GPU cache cleared")
def generate_response(self, prompt: str, **generation_kwargs) -> str:
"""
生成LLM回應
Args:
prompt: 輸入提示詞
**generation_kwargs: 額外的生成參數,可覆蓋預設值
Returns:
str: 生成的回應文本
Raises:
ModelGenerationError: 當生成失敗時
"""
# 確保模型已載入
if not self._model_loaded:
self._load_model()
try:
self.call_count += 1
self.logger.info(f"Generating response (call #{self.call_count})")
# clean GPU
self._clear_gpu_cache()
# 設置固定種子以提高一致性
torch.manual_seed(42)
# prepare input
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=self.max_length
).to(self.device)
# 準備生成參數
generation_params = self._prepare_generation_params(**generation_kwargs)
generation_params.update({
"pad_token_id": self.tokenizer.eos_token_id,
"attention_mask": inputs.attention_mask,
"use_cache": True,
})
# resposne
with torch.no_grad():
outputs = self.model.generate(inputs.input_ids, **generation_params)
# 解碼回應
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = self._extract_generated_response(full_response, prompt)
if not response or len(response.strip()) < 10:
raise ModelGenerationError("Generated response is too short or empty")
self.logger.info(f"Response generated successfully ({len(response)} characters)")
return response
except Exception as e:
error_msg = f"Text generation failed: {str(e)}"
self.logger.error(error_msg)
raise ModelGenerationError(error_msg) from e
def _prepare_generation_params(self, **kwargs) -> Dict[str, Any]:
"""
準備生成參數,支援模型特定的優化
Args:
**kwargs: 用戶提供的生成參數
Returns:
Dict[str, Any]: 完整的生成參數配置
"""
# basic parameters
params = {
"max_new_tokens": 120,
"temperature": self.temperature,
"top_p": self.top_p,
"do_sample": True,
}
# 針對Llama模型的特殊優化
if "llama" in self.model_path.lower():
params.update({
"max_new_tokens": 600,
"temperature": 0.35, # not too big
"top_p": 0.75,
"repetition_penalty": 1.5,
"num_beams": 5,
"length_penalty": 1,
"no_repeat_ngram_size": 3
})
else:
params.update({
"max_new_tokens": 300,
"temperature": 0.6,
"top_p": 0.9,
"num_beams": 1,
"repetition_penalty": 1.05
})
# 用戶參數覆蓋預設值
params.update(kwargs)
return params
def _extract_generated_response(self, full_response: str, prompt: str) -> str:
"""
從完整回應中提取生成的部分
Args:
full_response: 模型的完整輸出
prompt: 原始提示詞
Returns:
str: 提取的生成回應
"""
# 尋找assistant標記
assistant_tag = "<|assistant|>"
if assistant_tag in full_response:
response = full_response.split(assistant_tag)[-1].strip()
# 檢查是否有未閉合的user標記
user_tag = "<|user|>"
if user_tag in response:
response = response.split(user_tag)[0].strip()
return response
# 移除輸入提示詞
if full_response.startswith(prompt):
return full_response[len(prompt):].strip()
return full_response.strip()
def reset_context(self):
"""重置模型上下文,清理GPU緩存"""
if self._model_loaded:
self._clear_gpu_cache()
self.logger.info("Model context reset")
else:
self.logger.info("Model not loaded, no context to reset")
def get_current_device(self) -> str:
"""
獲取當前運行設備
Returns:
str: 當前設備名稱
"""
return self.device
def is_model_loaded(self) -> bool:
"""
檢查模型是否已載入
Returns:
bool: 模型載入狀態
"""
return self._model_loaded
def get_call_count(self) -> int:
"""
獲取模型調用次數
Returns:
int: 調用次數
"""
return self.call_count
def get_model_info(self) -> Dict[str, Any]:
"""
獲取模型信息
Returns:
Dict[str, Any]: 包含模型路徑、設備、載入狀態等信息
"""
return {
"model_path": self.model_path,
"device": self.device,
"is_loaded": self._model_loaded,
"call_count": self.call_count,
"has_hf_token": self.hf_token is not None
}