VisionScout / clip_zero_shot_classifier.py
DawnC's picture
Upload 31 files
4d1f920 verified
raw
history blame
62.9 kB
import torch
import clip
from PIL import Image
import numpy as np
from typing import List, Dict, Tuple, Optional, Union, Any
from landmark_data import ALL_LANDMARKS, get_all_landmark_prompts
class CLIPZeroShotClassifier:
"""
使用CLIP模型進行零樣本分類,專注於識別世界知名地標。
作為YOLO檢測的補充,處理標準對象檢測無法識別的地標建築。
"""
def __init__(self, model_name: str = "ViT-L/14", device: str = None):
"""
初始化CLIP零樣本分類器
Args:
model_name: CLIP模型名稱,默認為"ViT-L/14"
device: 運行設備,None則自動選擇
"""
# 設置運行設備
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
print(f"Initializing CLIP Zero-Shot Landmark Classifier ({model_name}) on {self.device}")
try:
self.model, self.preprocess = clip.load(model_name, device=self.device)
print(f"Successfully loaded CLIP model")
except Exception as e:
print(f"Error loading CLIP model: {e}")
raise
# 加載地標數據
try:
self.landmark_data = ALL_LANDMARKS
self.landmark_prompts = get_all_landmark_prompts()
print(f"Loaded {len(self.landmark_prompts)} landmark prompts for classification")
# 預計算地標文本特徵
self.landmark_text_features = self._precompute_text_features(self.landmark_prompts)
# 創建地標ID到索引的映射,可快速查找
self.landmark_id_to_index = {landmark_id: i for i, landmark_id in enumerate(ALL_LANDMARKS.keys())}
# 初始化批處理參數
self.batch_size = 16 # 默認批處理大小
self.confidence_threshold_multipliers = {
"close_up": 0.9, # 近景標準閾值
"partial": 0.6, # 部分可見降低閾值要求
"distant": 0.5, # 遠景更低閾值要求
"full_image": 0.7 # 整張圖像需要更高閾值
}
self.landmark_type_thresholds = {
"tower": 0.5, # 塔型建築需要更高閾值
"skyscraper": 0.4, # 摩天大樓使用較低閾值
"building": 0.55, # 一般建築物閾值略微降低
"monument": 0.5, # 紀念碑閾值
"natural": 0.6 # 自然地標可以使用較低閾值
}
# 初始化結果快取
self.results_cache = {} # 使用圖像hash作為鍵
self.cache_max_size = 100 # 最大快取項目數
except ImportError:
print("Warning: landmark_data.py not found. Landmark classification will be limited")
self.landmark_data = {}
self.landmark_prompts = []
self.landmark_text_features = None
self.landmark_id_to_index = {}
self.results_cache = {}
def _get_image_hash(self, image):
"""
為圖像生成簡單的 hash 值用於快取
Args:
image: PIL Image 或 numpy 數組
Returns:
str: 圖像的 hash 值
"""
if isinstance(image, np.ndarray):
# 對於 numpy 數組,降採樣並計算簡單 hash
small_img = image[::10, ::10] if image.ndim == 3 else image
return hash(small_img.tobytes())
else:
# 對於 PIL 圖像,調整大小後轉換為 bytes
small_img = image.resize((32, 32))
return hash(small_img.tobytes())
def _manage_cache(self):
"""
管理結果快取大小
"""
if len(self.results_cache) > self.cache_max_size:
oldest_key = next(iter(self.results_cache))
del self.results_cache[oldest_key]
def set_batch_size(self, batch_size: int):
"""
設置批處理大小
Args:
batch_size: 新的批處理大小
"""
self.batch_size = max(1, batch_size)
print(f"Batch size set to {self.batch_size}")
def adjust_confidence_threshold(self, detection_type: str, multiplier: float):
"""
調整特定檢測類型的置信度閾值乘數
Args:
detection_type: 檢測類型 ('close_up', 'partial', 'distant', 'full_image')
multiplier: 置信度閾值乘數
"""
if detection_type in self.confidence_threshold_multipliers:
self.confidence_threshold_multipliers[detection_type] = max(0.1, min(1.5, multiplier))
print(f"Adjusted confidence threshold multiplier for {detection_type} to {multiplier}")
else:
print(f"Unknown detection type: {detection_type}")
def _precompute_text_features(self, text_prompts: List[str]) -> torch.Tensor:
"""
預計算文本提示的CLIP特徵,提高批處理效率
Args:
text_prompts: 文本提示列表
Returns:
torch.Tensor: 預計算的文本特徵
"""
if not text_prompts:
return None
with torch.no_grad():
# Process in batches to avoid CUDA memory issues
batch_size = 128 # Adjust based on GPU memory
features_list = []
for i in range(0, len(text_prompts), batch_size):
batch_prompts = text_prompts[i:i+batch_size]
text_tokens = clip.tokenize(batch_prompts).to(self.device)
batch_features = self.model.encode_text(text_tokens)
batch_features = batch_features / batch_features.norm(dim=-1, keepdim=True)
features_list.append(batch_features)
# Concatenate all batches
if len(features_list) > 1:
text_features = torch.cat(features_list, dim=0)
else:
text_features = features_list[0]
return text_features
def _perform_pyramid_analysis(self,
image: Union[Image.Image, np.ndarray],
levels: int = 4,
base_threshold: float = 0.25,
aspect_ratios: List[float] = [1.0, 0.75, 1.5]) -> Dict[str, Any]:
"""
Performs multi-scale pyramid analysis on the image to improve landmark detection.
Args:
image: Input image
levels: Number of pyramid levels
base_threshold: Base confidence threshold
aspect_ratios: Different aspect ratios to try (for tall buildings vs wide landscapes)
Returns:
Dict: Results of pyramid analysis
"""
# Ensure image is PIL format
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
width, height = image.size
pyramid_results = []
# 對每個縮放和縱橫比組合進行處理
for level in range(levels):
# 計算縮放因子
scale_factor = 1.0 - (level * 0.2)
for aspect_ratio in aspect_ratios:
# 計算新尺寸,保持面積近似不變
if aspect_ratio != 1.0:
# 保持面積近似不變的情況下調整縱橫比
new_width = int(width * scale_factor * (1/aspect_ratio)**0.5)
new_height = int(height * scale_factor * aspect_ratio**0.5)
else:
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
# 調整圖像大小
scaled_image = image.resize((new_width, new_height), Image.LANCZOS)
# 預處理圖像
image_input = self.preprocess(scaled_image).unsqueeze(0).to(self.device)
# 獲取圖像特徵
with torch.no_grad():
image_features = self.model.encode_image(image_input)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# 計算相似度
similarity = (100.0 * image_features @ self.landmark_text_features.T).softmax(dim=-1)
similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]
# 找到最佳匹配
best_idx = similarity.argmax().item()
best_score = similarity[best_idx]
if best_score >= base_threshold:
landmark_id = list(self.landmark_data.keys())[best_idx]
landmark_info = self.landmark_data[landmark_id]
pyramid_results.append({
"landmark_id": landmark_id,
"landmark_name": landmark_info["name"],
"confidence": float(best_score),
"scale_factor": scale_factor,
"aspect_ratio": aspect_ratio,
"location": landmark_info["location"]
})
# 按置信度排序
pyramid_results.sort(key=lambda x: x["confidence"], reverse=True)
return {
"is_landmark": len(pyramid_results) > 0,
"results": pyramid_results,
"best_result": pyramid_results[0] if pyramid_results else None
}
def _enhance_features(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
"""
Enhances image features to improve landmark detection.
Args:
image: Input image
Returns:
PIL.Image: Enhanced image
"""
# Ensure image is PIL format
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# Convert to numpy for processing
img_array = np.array(image)
# Skip processing for grayscale images
if len(img_array.shape) < 3:
return image
# Apply adaptive contrast enhancement
# Convert to LAB color space
from skimage import color, exposure
try:
# Convert to LAB color space
if img_array.shape[2] == 4: # Handle RGBA
img_array = img_array[:,:,:3]
lab = color.rgb2lab(img_array[:,:,:3] / 255.0)
l_channel = lab[:,:,0]
# Enhance contrast of L channel
p2, p98 = np.percentile(l_channel, (2, 98))
l_channel_enhanced = exposure.rescale_intensity(l_channel, in_range=(p2, p98))
# Replace L channel and convert back to RGB
lab[:,:,0] = l_channel_enhanced
enhanced_img = color.lab2rgb(lab) * 255.0
enhanced_img = enhanced_img.astype(np.uint8)
return Image.fromarray(enhanced_img)
except ImportError:
print("Warning: skimage not available for feature enhancement")
return image
except Exception as e:
print(f"Error in feature enhancement: {e}")
return image
def _determine_landmark_type(self, landmark_id):
"""
自動判斷地標類型,基於地標數據和命名
Returns:
str: 地標類型,用於調整閾值
"""
if not landmark_id:
return "building" # 預設類型
# 獲取地標詳細數據
landmark_data = self.landmark_data if hasattr(self, 'landmark_data') else {}
landmark_info = landmark_data.get(landmark_id, {})
# 獲取地標相關文本
landmark_id_lower = landmark_id.lower()
landmark_name = landmark_info.get("name", "").lower()
landmark_location = landmark_info.get("location", "").lower()
landmark_aliases = [alias.lower() for alias in landmark_info.get("aliases", [])]
# 合併所有文本數據用於特徵判斷
combined_text = " ".join([landmark_id_lower, landmark_name] + landmark_aliases)
# 地標類型的特色特徵
type_features = {
"skyscraper": ["skyscraper", "tall", "tower", "高樓", "摩天", "大厦", "タワー"],
"tower": ["tower", "bell", "clock", "塔", "鐘樓", "タワー", "campanile"],
"monument": ["monument", "memorial", "statue", "紀念", "雕像", "像", "memorial"],
"natural": ["mountain", "lake", "canyon", "falls", "beach", "山", "湖", "峽谷", "瀑布", "海灘"],
"temple": ["temple", "shrine", "寺", "神社", "廟"],
"palace": ["palace", "castle", "宮", "城", "皇宮", "宫殿"],
"distinctive": ["unique", "leaning", "slanted", "傾斜", "斜", "獨特", "傾く"]
}
# 檢查是否位於亞洲地區
asian_regions = ["china", "japan", "korea", "taiwan", "singapore", "vietnam", "thailand",
"hong kong", "中國", "日本", "韓國", "台灣", "新加坡", "越南", "泰國", "香港"]
is_asian = any(region in landmark_location for region in asian_regions)
# 判斷地標類型
best_type = None
max_matches = 0
for type_name, features in type_features.items():
# 計算特徵詞匹配數量
matches = sum(1 for feature in features if feature in combined_text)
if matches > max_matches:
max_matches = matches
best_type = type_name
# 處理亞洲地區特例
if is_asian and best_type == "tower":
best_type = "skyscraper" # 亞洲地區的塔型建築閾值較低
# 特例處理:檢測傾斜建築
if any(term in combined_text for term in ["leaning", "slanted", "tilt", "inclined", "斜", "傾斜"]):
return "distinctive" # 傾斜建築需要特殊處理
return best_type if best_type and max_matches > 0 else "building" # 預設為一般建築
def classify_image_region(self,
image: Union[Image.Image, np.ndarray],
box: List[float],
threshold: float = 0.25,
detection_type: str = "close_up") -> Dict[str, Any]:
"""
對圖像的特定區域進行地標分類,具有增強的多尺度和部分識別能力
Args:
image: 原始圖像 (PIL Image 或 numpy數組)
box: 邊界框 [x1, y1, x2, y2]
threshold: 基礎分類置信度閾值
detection_type: 檢測類型,影響置信度調整
Returns:
Dict: 地標分類結果
"""
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# 生成圖像區域的hash用於快取
region_key = (self._get_image_hash(image), tuple(box), detection_type)
if region_key in self.results_cache:
return self.results_cache[region_key]
# 裁剪區域
x1, y1, x2, y2 = map(int, box)
cropped_image = image.crop((x1, y1, x2, y2))
enhanced_image = self._enhance_features(cropped_image)
# 分析視角信息
viewpoint_info = self._analyze_viewpoint(enhanced_image)
dominant_viewpoint = viewpoint_info["dominant_viewpoint"]
# 計算區域信息
region_width = x2 - x1
region_height = y2 - y1
image_width, image_height = image.size
# 根據區域大小判斷可能的檢測類型
region_area_ratio = (region_width * region_height) / (image_width * image_height)
if detection_type == "auto":
if region_area_ratio > 0.5:
detection_type = "close_up"
elif region_area_ratio > 0.2:
detection_type = "partial"
else:
detection_type = "distant"
# 根據視角調整檢測類型
if dominant_viewpoint == "close_up" and detection_type != "close_up":
detection_type = "close_up"
elif dominant_viewpoint == "distant" and detection_type != "distant":
detection_type = "distant"
elif dominant_viewpoint == "angled_view":
detection_type = "partial" # 角度視圖可能是部分可見
# 調整置信度閾值
base_multiplier = self.confidence_threshold_multipliers.get(detection_type, 1.0)
adjusted_threshold = threshold * base_multiplier
# 調整多尺度處理的尺度範圍和縱橫比 - 增強對傾斜建築的支持
scales = [1.0] # 默認尺度
# 基於視角選擇合適的尺度和縱橫比
if detection_type in ["partial", "distant"]:
scales = [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3] # 標準範圍
# 如果是特殊視角,進一步調整尺度和縱橫比 - 新增
if dominant_viewpoint in ["angled_view", "low_angle"]:
scales = [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4] # 更寬的範圍
# 準備縱橫比 - 同時支持水平和垂直地標
aspect_ratios = [1.0, 0.8, 1.2] # 標準縱橫比
# 針對可能的傾斜建築增加更多縱橫比 - 新增
if dominant_viewpoint in ["angled_view", "unique_feature"]:
aspect_ratios = [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5] # 更多樣的縱橫比
best_result = {
"landmark_id": None,
"landmark_name": None,
"confidence": 0.0,
"is_landmark": False
}
# 多尺度和縱橫比分析
for scale in scales:
for aspect_ratio in aspect_ratios:
# 縮放裁剪區域
current_width, current_height = cropped_image.size
# 計算新尺寸,保持面積不變但調整縱橫比
if aspect_ratio != 1.0:
new_width = int(current_width * scale * (1/aspect_ratio)**0.5)
new_height = int(current_height * scale * aspect_ratio**0.5)
else:
new_width = int(current_width * scale)
new_height = int(current_height * scale)
# 確保尺寸至少為1像素
new_width = max(1, new_width)
new_height = max(1, new_height)
# 縮放圖像
try:
scaled_image = cropped_image.resize((new_width, new_height), Image.LANCZOS)
except Exception as e:
print(f"Failed to resize image to {new_width}x{new_height}: {e}")
continue
# 預處理裁剪圖像
try:
image_input = self.preprocess(scaled_image).unsqueeze(0).to(self.device)
except Exception as e:
print(f"Failed to preprocess image: {e}")
continue
# 獲取圖像特徵
with torch.no_grad():
try:
image_features = self.model.encode_image(image_input)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# 計算與地標提示的相似度
similarity = (100.0 * image_features @ self.landmark_text_features.T).softmax(dim=-1)
similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]
# 找到最佳匹配
best_idx = similarity.argmax().item()
best_score = similarity[best_idx]
# 如果當前尺度結果更好,則更新
if best_score > best_result["confidence"]:
landmark_id = list(self.landmark_data.keys())[best_idx]
landmark_info = self.landmark_data[landmark_id]
best_result = {
"landmark_id": landmark_id,
"landmark_name": landmark_info["name"],
"location": landmark_info["location"],
"confidence": float(best_score),
"is_landmark": best_score >= adjusted_threshold,
"scale_used": scale,
"aspect_ratio_used": aspect_ratio,
"viewpoint": dominant_viewpoint
}
# 添加額外可用信息
for key in ["year_built", "architectural_style", "significance"]:
if key in landmark_info:
best_result[key] = landmark_info[key]
except Exception as e:
print(f"Error in calculating similarity: {e}")
continue
# 只有在有識別出地標ID且信心度足夠高時才應用地標類型閾值調整
if best_result["landmark_id"]:
landmark_type = self._determine_landmark_type(best_result["landmark_id"])
# 檢測是否為特殊類型的建築如斜塔
if landmark_type == "distinctive":
# 特殊建築的閾值降低25%
type_multiplier = 0.75
else:
# 使用已有的類型閾值
type_multiplier = self.landmark_type_thresholds.get(landmark_type, 1.0) / 0.5
# 更新判斷是否為地標的標準
final_threshold = adjusted_threshold * type_multiplier
best_result["is_landmark"] = best_result["confidence"] >= final_threshold
best_result["landmark_type"] = landmark_type # 添加地標類型信息
best_result["threshold_applied"] = final_threshold # 記錄應用的閾值
# 快取結果
self.results_cache[region_key] = best_result
self._manage_cache()
return best_result
def classify_batch_regions(self,
image: Union[Image.Image, np.ndarray],
boxes: List[List[float]],
threshold: float = 0.28) -> List[Dict[str, Any]]:
"""
批量處理多個圖像區域,提高效率
Args:
image: 原始圖像
boxes: 邊界框列表
threshold: 置信度閾值
Returns:
List[Dict]: 分類結果列表
"""
if not self.landmark_text_features is not None:
return [{"is_landmark": False, "confidence": 0.0} for _ in boxes]
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# 無框可處理時
if not boxes:
return []
# 裁剪並預處理所有區域
cropped_inputs = []
for box in boxes:
x1, y1, x2, y2 = map(int, box)
cropped_image = image.crop((x1, y1, x2, y2))
processed_image = self.preprocess(cropped_image).unsqueeze(0)
cropped_inputs.append(processed_image)
# batch process
batch_tensor = torch.cat(cropped_inputs).to(self.device)
# batch encoding
with torch.no_grad():
image_features = self.model.encode_image(batch_tensor)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# 計算相似度
similarity = (100.0 * image_features @ self.landmark_text_features.T).softmax(dim=-1)
similarity = similarity.cpu().numpy() if self.device == "cuda" else similarity.numpy()
# 處理每個區域的結果
results = []
for i, sim in enumerate(similarity):
best_idx = sim.argmax().item()
best_score = sim[best_idx]
if best_score >= threshold:
landmark_id = list(self.landmark_data.keys())[best_idx]
landmark_info = self.landmark_data[landmark_id]
results.append({
"landmark_id": landmark_id,
"landmark_name": landmark_info["name"],
"location": landmark_info["location"],
"confidence": float(best_score),
"is_landmark": True,
"box": boxes[i]
})
else:
results.append({
"landmark_id": None,
"landmark_name": None,
"confidence": float(best_score),
"is_landmark": False,
"box": boxes[i]
})
return results
def search_entire_image(self,
image: Union[Image.Image, np.ndarray],
threshold: float = 0.35,
detailed_analysis: bool = False) -> Dict[str, Any]:
"""
檢查整張圖像是否包含地標,具有增強的分析能力
Args:
image: 原始圖像
threshold: 置信度閾值
detailed_analysis: 是否進行詳細分析,包括多區域檢測
Returns:
Dict: 地標分類結果
"""
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# 檢查快取
image_key = (self._get_image_hash(image), "entire_image", detailed_analysis)
if image_key in self.results_cache:
return self.results_cache[image_key]
# 調整閾值
adjusted_threshold = threshold * self.confidence_threshold_multipliers.get("full_image", 1.0)
# 預處理圖像
image_input = self.preprocess(image).unsqueeze(0).to(self.device)
# 獲取圖像特徵
with torch.no_grad():
image_features = self.model.encode_image(image_input)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# 計算與地標提示的相似度
similarity = (100.0 * image_features @ self.landmark_text_features.T).softmax(dim=-1)
similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]
# 找到最佳匹配
best_idx = similarity.argmax().item()
best_score = similarity[best_idx]
# top3 landmark
top_indices = similarity.argsort()[-3:][::-1]
top_landmarks = []
for idx in top_indices:
score = similarity[idx]
landmark_id = list(self.landmark_data.keys())[idx]
landmark_info = self.landmark_data[landmark_id]
landmark_result = {
"landmark_id": landmark_id,
"landmark_name": landmark_info["name"],
"location": landmark_info["location"],
"confidence": float(score)
}
# 添加額外可用信息
if "year_built" in landmark_info:
landmark_result["year_built"] = landmark_info["year_built"]
if "architectural_style" in landmark_info:
landmark_result["architectural_style"] = landmark_info["architectural_style"]
if "significance" in landmark_info:
landmark_result["significance"] = landmark_info["significance"]
top_landmarks.append(landmark_result)
# main result
result = {}
if best_score >= adjusted_threshold:
landmark_id = list(self.landmark_data.keys())[best_idx]
landmark_info = self.landmark_data[landmark_id]
# 應用地標類型特定閾值
landmark_type = self._determine_landmark_type(landmark_id)
type_multiplier = self.landmark_type_thresholds.get(landmark_type, 1.0) / 0.5
final_threshold = adjusted_threshold * type_multiplier
if best_score >= final_threshold:
result = {
"landmark_id": landmark_id,
"landmark_name": landmark_info["name"],
"location": landmark_info["location"],
"confidence": float(best_score),
"is_landmark": True,
"landmark_type": landmark_type,
"top_landmarks": top_landmarks
}
# 添加額外可用信息
if "year_built" in landmark_info:
result["year_built"] = landmark_info["year_built"]
if "architectural_style" in landmark_info:
result["architectural_style"] = landmark_info["architectural_style"]
if "significance" in landmark_info:
result["significance"] = landmark_info["significance"]
else:
result = {
"landmark_id": None,
"landmark_name": None,
"confidence": float(best_score),
"is_landmark": False,
"top_landmarks": top_landmarks
}
# 如果請求詳細分析且是地標,進一步分析圖像區域
if detailed_analysis and result.get("is_landmark", False):
# 創建不同區域進行更深入分析
width, height = image.size
regions = [
# 中心區域
[width * 0.25, height * 0.25, width * 0.75, height * 0.75],
# 左半部
[0, 0, width * 0.5, height],
# 右半部
[width * 0.5, 0, width, height],
# 上半部
[0, 0, width, height * 0.5],
# 下半部
[0, height * 0.5, width, height]
]
region_results = []
for i, box in enumerate(regions):
region_result = self.classify_image_region(
image,
box,
threshold=threshold * 0.9,
detection_type="partial"
)
if region_result["is_landmark"]:
region_result["region_name"] = ["center", "left", "right", "top", "bottom"][i]
region_results.append(region_result)
# 添加區域分析結果
if region_results:
result["region_analyses"] = region_results
# 快取結果
self.results_cache[image_key] = result
self._manage_cache()
return result
def enhanced_landmark_detection(self,
image: Union[Image.Image, np.ndarray],
threshold: float = 0.3) -> Dict[str, Any]:
"""
Enhanced landmark detection using multiple analysis techniques.
Args:
image: Input image
threshold: Base confidence threshold
Returns:
Dict: Comprehensive landmark detection results
"""
# Ensure image is PIL format
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# Phase 1: Analyze viewpoint to adjust detection parameters
viewpoint_info = self._analyze_viewpoint(image)
viewpoint = viewpoint_info["dominant_viewpoint"]
# Adjust threshold based on viewpoint
if viewpoint == "distant":
adjusted_threshold = threshold * 0.7 # Lower threshold for distant views
elif viewpoint == "close_up":
adjusted_threshold = threshold * 1.1 # Higher threshold for close-ups
else:
adjusted_threshold = threshold
# Phase 2: Perform multi-scale pyramid analysis
pyramid_results = self._perform_pyramid_analysis(image, levels=3, base_threshold=adjusted_threshold)
# Phase 3: Perform grid-based region analysis
grid_results = []
width, height = image.size
# Create adaptive grid based on viewpoint
if viewpoint == "distant":
grid_size = 3 # Coarser grid for distant views
elif viewpoint == "close_up":
grid_size = 5 # Finer grid for close-ups
else:
grid_size = 4 # Default grid size
# Generate grid regions
for i in range(grid_size):
for j in range(grid_size):
box = [
width * (j/grid_size),
height * (i/grid_size),
width * ((j+1)/grid_size),
height * ((i+1)/grid_size)
]
# Apply feature enhancement
region_result = self.classify_image_region(
image,
box,
threshold=adjusted_threshold,
detection_type="auto"
)
if region_result["is_landmark"]:
region_result["grid_position"] = (i, j)
grid_results.append(region_result)
# Phase 4: Cross-validate and combine results
all_detections = []
# Add pyramid results
if pyramid_results["is_landmark"] and pyramid_results["best_result"]:
all_detections.append({
"source": "pyramid",
"landmark_id": pyramid_results["best_result"]["landmark_id"],
"landmark_name": pyramid_results["best_result"]["landmark_name"],
"confidence": pyramid_results["best_result"]["confidence"],
"scale_factor": pyramid_results["best_result"].get("scale_factor", 1.0)
})
# Add grid results
for result in grid_results:
all_detections.append({
"source": "grid",
"landmark_id": result["landmark_id"],
"landmark_name": result["landmark_name"],
"confidence": result["confidence"],
"grid_position": result.get("grid_position", (0, 0))
})
# Search entire image
full_image_result = self.search_entire_image(image, threshold=adjusted_threshold)
if full_image_result and full_image_result.get("is_landmark", False):
all_detections.append({
"source": "full_image",
"landmark_id": full_image_result["landmark_id"],
"landmark_name": full_image_result["landmark_name"],
"confidence": full_image_result["confidence"]
})
# Group by landmark_id and calculate aggregate confidence
landmark_groups = {}
for detection in all_detections:
landmark_id = detection["landmark_id"]
if landmark_id not in landmark_groups:
landmark_groups[landmark_id] = {
"landmark_id": landmark_id,
"landmark_name": detection["landmark_name"],
"detections": [],
"sources": set()
}
landmark_groups[landmark_id]["detections"].append(detection)
landmark_groups[landmark_id]["sources"].add(detection["source"])
# Calculate aggregate confidence for each landmark
for landmark_id, group in landmark_groups.items():
detections = group["detections"]
# Base confidence is the maximum confidence from any source
max_confidence = max(d["confidence"] for d in detections)
# Bonus for detection from multiple sources
source_count = len(group["sources"])
source_bonus = min(0.15, (source_count - 1) * 0.05) # Up to 15% bonus
# Consistency bonus for multiple detections of the same landmark
detection_count = len(detections)
consistency_bonus = min(0.1, (detection_count - 1) * 0.02) # Up to 10% bonus
# Calculate final confidence
aggregate_confidence = min(1.0, max_confidence + source_bonus + consistency_bonus)
group["confidence"] = aggregate_confidence
group["detection_count"] = detection_count
group["source_count"] = source_count
# Sort landmarks by confidence
sorted_landmarks = sorted(
landmark_groups.values(),
key=lambda x: x["confidence"],
reverse=True
)
return {
"is_landmark_scene": len(sorted_landmarks) > 0,
"detected_landmarks": sorted_landmarks,
"viewpoint_info": viewpoint_info,
"primary_landmark": sorted_landmarks[0] if sorted_landmarks else None
}
def _analyze_architectural_features(self, image):
"""
Analyzes the architectural features of a structure in the image without hardcoding specific landmarks.
Args:
image: Input image
Returns:
Dict: Architectural feature analysis results
"""
# Define universal architectural feature prompts that apply to all types of landmarks
architecture_prompts = {
"tall_structure": "a tall vertical structure standing alone",
"tiered_building": "a building with multiple stacked tiers or segments",
"historical_structure": "a building with historical architectural elements",
"modern_design": "a modern structure with contemporary architectural design",
"segmented_exterior": "a structure with visible segmented or sectioned exterior",
"viewing_platform": "a tall structure with observation area at the top",
"time_display": "a structure with timepiece features",
"glass_facade": "a building with prominent glass exterior surfaces",
"memorial_structure": "a monument or memorial structure",
"ancient_construction": "ancient constructed elements or archaeological features",
"natural_landmark": "a natural geographic formation or landmark",
"slanted_design": "a structure with non-vertical or leaning profile"
}
# Calculate similarity scores against universal architectural patterns
context_scores = self.calculate_similarity_scores(image, architecture_prompts)
# Determine most relevant architectural features
top_features = sorted(context_scores.items(), key=lambda x: x[1], reverse=True)[:3]
# Calculate feature confidence
context_confidence = sum(score for _, score in top_features) / 3
# Determine primary architectural category based on top features
architectural_categories = {
"tower": ["tall_structure", "viewing_platform", "time_display"],
"skyscraper": ["tall_structure", "modern_design", "glass_facade"],
"historical": ["historical_structure", "ancient_construction", "memorial_structure"],
"natural": ["natural_landmark"],
"distinctive": ["tiered_building", "segmented_exterior", "slanted_design"]
}
# Score each category based on the top features
category_scores = {}
for category, features in architectural_categories.items():
category_score = 0
for feature, score in context_scores.items():
if feature in features:
category_score += score
category_scores[category] = category_score
primary_category = max(category_scores.items(), key=lambda x: x[1])[0]
return {
"architectural_features": top_features,
"context_confidence": context_confidence,
"primary_category": primary_category,
"category_scores": category_scores
}
def intelligent_landmark_search(self,
image: Union[Image.Image, np.ndarray],
yolo_boxes: Optional[List[List[float]]] = None,
base_threshold: float = 0.25) -> Dict[str, Any]:
"""
對圖像進行智能地標搜索,綜合整張圖像分析和區域分析
Args:
image: 原始圖像
yolo_boxes: YOLO檢測到的邊界框 (可選)
base_threshold: 基礎置信度閾值
Returns:
Dict: 包含所有檢測結果的綜合分析
"""
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# No YOLO 框時,可以稍微降低閾值以提高召回率
actual_threshold = base_threshold * 0.85 if yolo_boxes is None or len(yolo_boxes) == 0 else base_threshold
# 首先對整張圖像進行分析
try:
full_image_result = self.search_entire_image(
image,
threshold=actual_threshold,
detailed_analysis=True # 確保詳細分析開啟
)
# No YOLO 框,則進行多尺度分析以提高檢測機會
if (yolo_boxes is None or len(yolo_boxes) == 0) and (not full_image_result or not full_image_result.get("is_landmark", False)):
print("No YOLO boxes provided, attempting multi-scale pyramid analysis")
try:
if hasattr(self, '_perform_pyramid_analysis'):
pyramid_results = self._perform_pyramid_analysis(
image,
levels=4, #
base_threshold=actual_threshold,
aspect_ratios=[1.0, 0.75, 1.5, 0.5, 2.0]
)
if pyramid_results and pyramid_results.get("is_landmark", False) and pyramid_results.get("best_result", {}).get("confidence", 0) > actual_threshold:
# 使用金字塔分析結果增強或替代全圖結果
if not full_image_result or not full_image_result.get("is_landmark", False):
full_image_result = {
"is_landmark": True,
"landmark_id": pyramid_results["best_result"]["landmark_id"],
"landmark_name": pyramid_results["best_result"]["landmark_name"],
"confidence": pyramid_results["best_result"]["confidence"],
"location": pyramid_results["best_result"].get("location", "Unknown Location")
}
print(f"Pyramid analysis detected landmark: {pyramid_results['best_result']['landmark_name']} with confidence {pyramid_results['best_result']['confidence']:.3f}")
else:
print("Pyramid analysis not available, skipping multi-scale detection")
except Exception as e:
print(f"Error in pyramid analysis: {e}")
except Exception as e:
print(f"Error in search_entire_image: {e}")
import traceback
traceback.print_exc()
full_image_result = None
# 初始化結果字典
result = {
"full_image_analysis": full_image_result if full_image_result else {},
"is_landmark_scene": False, # 默認值
"detected_landmarks": []
}
# 上下文感知比較,處理接近的排名結果
if full_image_result and "top_landmarks" in full_image_result and len(full_image_result["top_landmarks"]) >= 2:
top_landmarks = full_image_result["top_landmarks"]
# 檢查前兩個結果是否非常接近(信心度差異小於 0.1)
if len(top_landmarks) >= 2 and abs(top_landmarks[0]["confidence"] - top_landmarks[1]["confidence"]) < 0.1:
# 對於接近的結果,使用通用建築特徵分析進行區分
try:
# 分析建築特徵
if hasattr(self, '_analyze_architectural_features'):
architectural_analysis = self._analyze_architectural_features(image)
top_features = architectural_analysis.get("architectural_features", [])
primary_category = architectural_analysis.get("primary_category", "")
# 根據建築特徵調整地標置信度
for i, landmark in enumerate(top_landmarks[:2]):
if i >= len(top_landmarks):
continue
landmark_id = landmark.get("landmark_id", "").lower()
confidence_boost = 0
# 使用主要建築類別來調整置信度,使用通用條件而非特定地標名稱
if primary_category == "tower" and any(term in landmark_id for term in ["tower", "spire", "needle"]):
confidence_boost += 0.05
elif primary_category == "skyscraper" and any(term in landmark_id for term in ["building", "skyscraper", "tall"]):
confidence_boost += 0.05
elif primary_category == "historical" and any(term in landmark_id for term in ["monument", "castle", "palace", "temple"]):
confidence_boost += 0.05
elif primary_category == "distinctive" and any(term in landmark_id for term in ["unusual", "unique", "special", "famous"]):
confidence_boost += 0.05
# 根據特定特徵進一步微調,使用通用特徵描述而非特定地標
for feature, score in top_features:
if feature == "time_display" and "clock" in landmark_id:
confidence_boost += 0.03
elif feature == "segmented_exterior" and "segmented" in landmark_id:
confidence_boost += 0.03
elif feature == "slanted_design" and "leaning" in landmark_id:
confidence_boost += 0.03
# 應用信心度調整
if confidence_boost > 0 and i < len(top_landmarks):
top_landmarks[i]["confidence"] += confidence_boost
print(f"Boosted {landmark['landmark_name']} confidence by {confidence_boost:.2f} based on architectural features ({primary_category})")
# 重新排序
top_landmarks.sort(key=lambda x: x["confidence"], reverse=True)
full_image_result["top_landmarks"] = top_landmarks
if top_landmarks:
full_image_result["landmark_id"] = top_landmarks[0]["landmark_id"]
full_image_result["landmark_name"] = top_landmarks[0]["landmark_name"]
full_image_result["confidence"] = top_landmarks[0]["confidence"]
full_image_result["location"] = top_landmarks[0].get("location", "Unknown Location")
except Exception as e:
print(f"Error in architectural feature analysis: {e}")
import traceback
traceback.print_exc()
if full_image_result and full_image_result.get("is_landmark", False):
result["is_landmark_scene"] = True
landmark_id = full_image_result.get("landmark_id", "unknown")
# extract landmark info
landmark_specific_info = self._extract_landmark_specific_info(landmark_id)
landmark_info = {
"landmark_id": landmark_id,
"landmark_name": full_image_result.get("landmark_name", "Unknown Landmark"),
"confidence": full_image_result.get("confidence", 0.0),
"location": full_image_result.get("location", "Unknown Location"),
"region_type": "full_image",
"box": [0, 0, getattr(image, 'width', 0), getattr(image, 'height', 0)]
}
# 整合地標特定info,確保正確的名稱被使用
landmark_info.update(landmark_specific_info)
# 如果特定信息中有更準確的地標名稱,使用它
if landmark_specific_info.get("landmark_name"):
landmark_info["landmark_name"] = landmark_specific_info["landmark_name"]
result["detected_landmarks"].append(landmark_info)
# 確保地標特定活動被正確設置為主要結果
if landmark_specific_info.get("has_specific_activities", False):
result["primary_landmark_activities"] = landmark_specific_info.get("landmark_specific_activities", [])
print(f"Set primary landmark activities: {len(result['primary_landmark_activities'])} activities for {landmark_info['landmark_name']}")
# 如果提供了YOLO邊界框,分析這些區域
if yolo_boxes and len(yolo_boxes) > 0:
for box in yolo_boxes:
try:
if hasattr(self, 'classify_image_region'):
box_result = self.classify_image_region(
image,
box,
threshold=base_threshold,
detection_type="auto"
)
# 如果檢測到地標
if box_result and box_result.get("is_landmark", False):
# 檢查是否與已檢測的地標重複
is_duplicate = False
for existing in result["detected_landmarks"]:
if existing.get("landmark_id") == box_result.get("landmark_id"):
# 如果新的置信度更高,則更新
if box_result.get("confidence", 0) > existing.get("confidence", 0):
existing.update({
"confidence": box_result.get("confidence", 0),
"region_type": "yolo_box",
"box": box
})
is_duplicate = True
break
# 如果不是重複的,添加到列表
if not is_duplicate:
result["detected_landmarks"].append({
"landmark_id": box_result.get("landmark_id", "unknown"),
"landmark_name": box_result.get("landmark_name", "Unknown Landmark"),
"confidence": box_result.get("confidence", 0.0),
"location": box_result.get("location", "Unknown Location"),
"region_type": "yolo_box",
"box": box
})
except Exception as e:
print(f"Error in analyzing YOLO box: {e}")
continue
# 最後,執行額外的網格搜索以捕獲可能被遺漏的地標
# 但只有在尚未發現地標或僅發現低置信度地標時
should_do_grid_search = (
len(result["detected_landmarks"]) == 0 or
max([landmark.get("confidence", 0) for landmark in result["detected_landmarks"]], default=0) < 0.5
)
if should_do_grid_search and hasattr(self, 'classify_image_region'):
try:
# 創建5x5網格
width, height = getattr(image, 'size', (getattr(image, 'width', 0), getattr(image, 'height', 0)))
if not isinstance(width, (int, float)) or width <= 0:
width = getattr(image, 'width', 0)
if not isinstance(height, (int, float)) or height <= 0:
height = getattr(image, 'height', 0)
if width > 0 and height > 0:
grid_boxes = []
for i in range(5):
for j in range(5):
grid_boxes.append([
width * (j/5), height * (i/5),
width * ((j+1)/5), height * ((i+1)/5)
])
# 分析每個網格區域
for box in grid_boxes:
try:
grid_result = self.classify_image_region(
image,
box,
threshold=base_threshold * 0.9, # 稍微降低網格搜索閾值
detection_type="partial"
)
# 如果檢測到地標
if grid_result and grid_result.get("is_landmark", False):
# 檢查是否與已檢測的地標重複
is_duplicate = False
for existing in result["detected_landmarks"]:
if existing.get("landmark_id") == grid_result.get("landmark_id"):
is_duplicate = True
break
# 如果不是重複的,添加到列表
if not is_duplicate:
result["detected_landmarks"].append({
"landmark_id": grid_result.get("landmark_id", "unknown"),
"landmark_name": grid_result.get("landmark_name", "Unknown Landmark"),
"confidence": grid_result.get("confidence", 0.0),
"location": grid_result.get("location", "Unknown Location"),
"region_type": "grid",
"box": box
})
except Exception as e:
print(f"Error in analyzing grid region: {e}")
continue
except Exception as e:
print(f"Error in grid search: {e}")
import traceback
traceback.print_exc()
# 按置信度排序檢測結果
result["detected_landmarks"].sort(key=lambda x: x.get("confidence", 0), reverse=True)
# 更新整體場景類型判斷
if len(result["detected_landmarks"]) > 0:
result["is_landmark_scene"] = True
result["primary_landmark"] = result["detected_landmarks"][0]
# 添加 clip_analysis_on_full_image 結果,以便給 LLM 提供更多上下文
if full_image_result and "clip_analysis" in full_image_result:
result["clip_analysis_on_full_image"] = full_image_result["clip_analysis"]
return result
def _extract_landmark_specific_info(self, landmark_id: str) -> Dict[str, Any]:
"""
提取特定地標的詳細信息,包括特色模板和活動建議
Args:
landmark_id: 地標ID
Returns:
Dict: 地標特定信息
"""
if not landmark_id or landmark_id == "unknown":
return {"has_specific_activities": False}
specific_info = {"has_specific_activities": False}
# 從 ALL_LANDMARKS 或 self.landmark_data 中提取基本信息
landmark_data_source = None
# 優先嘗試從類屬性獲取
if hasattr(self, 'landmark_data') and self.landmark_data and landmark_id in self.landmark_data:
landmark_data_source = self.landmark_data[landmark_id]
print(f"Using landmark data from class attribute for {landmark_id}")
else:
try:
if landmark_id in ALL_LANDMARKS:
landmark_data_source = ALL_LANDMARKS[landmark_id]
print(f"Using landmark data from ALL_LANDMARKS for {landmark_id}")
except ImportError:
print("Warning: Could not import ALL_LANDMARKS from landmark_data")
except Exception as e:
print(f"Error accessing ALL_LANDMARKS: {e}")
# 處理地標基本數據
if landmark_data_source:
# 提取正確的地標名稱
if "name" in landmark_data_source:
specific_info["landmark_name"] = landmark_data_source["name"]
# 提取所有可用的 prompts 作為特色模板
if "prompts" in landmark_data_source:
specific_info["feature_templates"] = landmark_data_source["prompts"][:5]
specific_info["primary_template"] = landmark_data_source["prompts"][0]
# 提取別名info
if "aliases" in landmark_data_source:
specific_info["aliases"] = landmark_data_source["aliases"]
# 提取位置信息
if "location" in landmark_data_source:
specific_info["location"] = landmark_data_source["location"]
# 提取其他相關信息
for key in ["year_built", "architectural_style", "significance", "description"]:
if key in landmark_data_source:
specific_info[key] = landmark_data_source[key]
# 嘗試從 LANDMARK_ACTIVITIES 中提取活動建議
try:
if landmark_id in LANDMARK_ACTIVITIES:
activities = LANDMARK_ACTIVITIES[landmark_id]
specific_info["landmark_specific_activities"] = activities
specific_info["has_specific_activities"] = True
print(f"Found {len(activities)} specific activities for landmark {landmark_id}")
else:
print(f"No specific activities found for landmark {landmark_id} in LANDMARK_ACTIVITIES")
specific_info["has_specific_activities"] = False
except ImportError:
print("Warning: Could not import LANDMARK_ACTIVITIES from landmark_activities")
specific_info["has_specific_activities"] = False
except Exception as e:
print(f"Error loading landmark activities for {landmark_id}: {e}")
specific_info["has_specific_activities"] = False
return specific_info
def _analyze_viewpoint(self, image: Union[Image.Image, np.ndarray]) -> Dict[str, float]:
"""
Analyzes the image viewpoint to adjust detection parameters.
Args:
image: Input image
Returns:
Dict: Viewpoint analysis results
"""
viewpoint_prompts = {
"aerial_view": "an aerial view from above looking down",
"street_level": "a street level view looking up at a tall structure",
"eye_level": "an eye-level horizontal view of a landmark",
"distant": "a distant view of a landmark on the horizon",
"close_up": "a close-up detailed view of architectural features",
"interior": "an interior view inside a structure"
}
# Calculate similarity scores
viewpoint_scores = self.calculate_similarity_scores(image, viewpoint_prompts)
# Find dominant viewpoint
dominant_viewpoint = max(viewpoint_scores.items(), key=lambda x: x[1])
return {
"viewpoint_scores": viewpoint_scores,
"dominant_viewpoint": dominant_viewpoint[0],
"confidence": dominant_viewpoint[1]
}
def calculate_similarity_scores(self, image: Union[Image.Image, np.ndarray],
prompts: Dict[str, str]) -> Dict[str, float]:
"""
計算圖像與一組特定提示之間的相似度分數
Args:
image: 輸入圖像
prompts: 提示詞字典 {名稱: 提示文本}
Returns:
Dict[str, float]: 每個提示的相似度分數
"""
# 確保圖像是PIL格式
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")
# 預處理圖像
image_input = self.preprocess(image).unsqueeze(0).to(self.device)
# 獲取圖像特徵
with torch.no_grad():
image_features = self.model.encode_image(image_input)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# 計算與每個提示的相似度
scores = {}
prompt_texts = list(prompts.values())
prompt_tokens = clip.tokenize(prompt_texts).to(self.device)
with torch.no_grad():
prompt_features = self.model.encode_text(prompt_tokens)
prompt_features = prompt_features / prompt_features.norm(dim=-1, keepdim=True)
# calculate similarity
similarity = (100.0 * image_features @ prompt_features.T).softmax(dim=-1)
similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]
# 填充結果字典
for i, (name, _) in enumerate(prompts.items()):
scores[name] = float(similarity[i])
return scores