VisionScout / image_processor.py
DawnC's picture
Upload 31 files
4d1f920 verified
raw
history blame
27.9 kB
import os
import numpy as np
import torch
import cv2
from PIL import Image
import tempfile
import uuid
from typing import Dict, List, Any, Optional, Tuple
from detection_model import DetectionModel
from color_mapper import ColorMapper
from visualization_helper import VisualizationHelper
from evaluation_metrics import EvaluationMetrics
from lighting_analyzer import LightingAnalyzer
from scene_analyzer import SceneAnalyzer
from places365_model import Places365Model
class ImageProcessor:
"""
Class for handling image processing and object detection operations
Separates processing logic from UI components
"""
def __init__(self, use_llm=True, llm_model_path=None, enable_places365=True, places365_model_name='resnet50_places365'):
"""Initialize the image processor with required components"""
print(f"Initializing ImageProcessor with use_llm={use_llm}, enable_places365={enable_places365}")
try:
# Initialize basic components first
self.use_llm = use_llm
self.llm_model_path = llm_model_path
self.enable_places365 = enable_places365
self.model_instances = {}
# Initialize ColorMapper
self.color_mapper = ColorMapper()
print("ColorMapper initialized successfully")
# Initialize LightingAnalyzer
self.lighting_analyzer = LightingAnalyzer()
print("LightingAnalyzer initialized successfully")
# Initialize Places365 model if enabled
self.places365_model = None
if self.enable_places365:
try:
self.places365_model = Places365Model(
model_name=places365_model_name,
device=None
)
print(f"Places365 model initialized successfully with {places365_model_name}")
except Exception as e:
print(f"Warning: Failed to initialize Places365 model: {e}")
print("Continuing without Places365 analysis")
self.enable_places365 = False
self.places365_model = None
# Initialize SceneAnalyzer with error handling
self.scene_analyzer = None
self.class_names = None # Will be set when first model is loaded
try:
# Initialize SceneAnalyzer without class_names (will be set later)
self.scene_analyzer = SceneAnalyzer(
class_names=None,
use_llm=self.use_llm,
use_clip=True,
enable_landmark=True,
llm_model_path=self.llm_model_path
)
print("SceneAnalyzer initialized successfully")
# Verify critical components
if self.scene_analyzer is not None:
print(f"SceneAnalyzer status - spatial_analyzer: {hasattr(self.scene_analyzer, 'spatial_analyzer')}, "
f"descriptor: {hasattr(self.scene_analyzer, 'descriptor')}, "
f"scene_describer: {hasattr(self.scene_analyzer, 'scene_describer')}")
else:
print("WARNING: scene_analyzer is None after initialization")
except Exception as e:
print(f"Error initializing SceneAnalyzer: {e}")
import traceback
traceback.print_exc()
self.scene_analyzer = None
print("ImageProcessor initialization completed successfully")
except Exception as e:
print(f"Critical error during ImageProcessor initialization: {e}")
import traceback
traceback.print_exc()
raise RuntimeError(f"Failed to initialize ImageProcessor: {str(e)}")
def get_model_instance(self, model_name: str, confidence: float = 0.25, iou: float = 0.25) -> DetectionModel:
"""
Get or create a model instance based on model name
Args:
model_name: Name of the model to use
confidence: Confidence threshold for detection
iou: IoU threshold for non-maximum suppression
Returns:
DetectionModel instance
"""
if model_name not in self.model_instances:
print(f"Creating new model instance for {model_name}")
self.model_instances[model_name] = DetectionModel(
model_name=model_name,
confidence=confidence,
iou=iou
)
else:
print(f"Using existing model instance for {model_name}")
self.model_instances[model_name].confidence = confidence
return self.model_instances[model_name]
def analyze_scene(self, detection_result: Any, lighting_info: Optional[Dict] = None, enable_landmark=True, places365_info=None) -> Dict:
"""
Perform scene analysis on detection results
Args:
detection_result: Object detection result from YOLOv8
lighting_info: Lighting condition analysis results (optional)
enable_landmark: Whether to enable landmark detection
places365_info: Places365 analysis results (optional)
Returns:
Dictionary containing scene analysis results
"""
print(f"DEBUG: analyze_scene received enable_landmark={enable_landmark}")
try:
# Check if detection_result has valid names
class_names = getattr(detection_result, 'names', None) if detection_result else None
# Initialize or reinitialize scene analyzer if needed
if self.scene_analyzer is None:
print("Scene analyzer not initialized, creating new instance")
self.scene_analyzer = SceneAnalyzer(
class_names=class_names,
use_llm=self.use_llm,
use_clip=True,
enable_landmark=enable_landmark,
llm_model_path=self.llm_model_path
)
if self.scene_analyzer is None:
raise ValueError("Failed to create SceneAnalyzer instance")
else:
# Update existing scene analyzer settings
self.scene_analyzer.enable_landmark = enable_landmark
# Update class names if available and different
if class_names and self.scene_analyzer.class_names != class_names:
self.scene_analyzer.class_names = class_names
if hasattr(self.scene_analyzer, 'spatial_analyzer') and self.scene_analyzer.spatial_analyzer:
self.scene_analyzer.spatial_analyzer.class_names = class_names
# Update landmark detection settings in child components
if hasattr(self.scene_analyzer, 'spatial_analyzer') and self.scene_analyzer.spatial_analyzer:
self.scene_analyzer.spatial_analyzer.enable_landmark = enable_landmark
# Perform scene analysis with lighting info and Places365 context
scene_analysis = self.scene_analyzer.analyze(
detection_result=detection_result,
lighting_info=lighting_info,
class_confidence_threshold=0.35,
scene_confidence_threshold=0.6,
enable_landmark=enable_landmark,
places365_info=places365_info
)
return scene_analysis
except Exception as e:
print(f"Error in scene analysis: {str(e)}")
import traceback
traceback.print_exc()
# Return a valid default result
return {
"scene_type": "unknown",
"confidence": 0.0,
"description": f"Error during scene analysis: {str(e)}",
"enhanced_description": "Scene analysis could not be completed due to an error.",
"objects_present": [],
"object_count": 0,
"regions": {},
"possible_activities": [],
"safety_concerns": [],
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
def analyze_lighting_conditions(self, image, places365_info: Optional[Dict] = None):
"""
分析光照條件並考慮 Places365 場景資訊。
Args:
image: 輸入圖像
places365_info: Places365 場景分析結果,用於覆蓋邏輯
Returns:
Dict: 光照分析結果
"""
return self.lighting_analyzer.analyze(image, places365_info=places365_info)
def analyze_places365_scene(self, image):
"""
Analyze scene using Places365 model.
Args:
image: Input image (PIL Image)
Returns:
Dict: Places365 analysis results or None if disabled/failed
"""
if not self.enable_places365 or self.places365_model is None:
return None
try:
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
print(f"Warning: Cannot process image of type {type(image)} for Places365")
return None
places365_result = self.places365_model.predict(image)
if places365_result and places365_result.get('confidence', 0) > 0.1:
print(f"Places365 detected: {places365_result['scene_label']} "
f"(mapped: {places365_result['mapped_scene_type']}) "
f"confidence: {places365_result['confidence']:.3f}")
return places365_result
else:
print("Places365 analysis failed or low confidence")
return None
except Exception as e:
print(f"Error in Places365 analysis: {str(e)}")
return None
def process_image(self, image: Any, model_name: str, confidence_threshold: float, filter_classes: Optional[List[int]] = None, enable_landmark: bool = True) -> Tuple[Any, str, Dict]:
"""
Process an image for object detection and scene analysis.
Args:
image: Input image (numpy array or PIL Image).
model_name: Name of the model to use.
confidence_threshold: Confidence threshold for detection.
filter_classes: Optional list of classes to filter results.
enable_landmark: Whether to enable landmark detection for this run.
Returns:
Tuple of (result_image_pil, result_text, stats_data_with_scene_analysis).
"""
model_instance = self.get_model_instance(model_name, confidence_threshold)
if model_instance is None:
return None, f"Failed to load model: {model_name}. Please check model configuration.", {}
result = None
stats_data = {}
temp_path = None
pil_image_for_processing = None # Use this to store the consistently processed PIL image
try:
if isinstance(image, np.ndarray):
if image.ndim == 3 and image.shape[2] == 3: # RGB or BGR
# Assuming BGR from OpenCV, convert to RGB for PIL standard
image_rgb_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image_for_processing = Image.fromarray(image_rgb_np)
elif image.ndim == 3 and image.shape[2] == 4: # RGBA or BGRA
image_rgba_np = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) # Ensure RGBA
pil_image_for_processing = Image.fromarray(image_rgba_np).convert("RGB") # Convert to RGB
elif image.ndim == 2: # Grayscale
pil_image_for_processing = Image.fromarray(image).convert("RGB")
else:
pil_image_for_processing = Image.fromarray(image) # Hope for the best
elif isinstance(image, Image.Image):
pil_image_for_processing = image.copy() # Use a copy
elif image is None:
return None, "No image provided. Please upload an image.", {}
else:
return None, f"Unsupported image type: {type(image)}. Please provide a NumPy array or PIL Image.", {}
if pil_image_for_processing.mode != "RGB": # Ensure final image is RGB
pil_image_for_processing = pil_image_for_processing.convert("RGB")
# Add Places365 scene analysis parallel to lighting analysis
places365_info = self.analyze_places365_scene(pil_image_for_processing)
lighting_info = self.analyze_lighting_conditions(pil_image_for_processing, places365_info=places365_info)
temp_dir = tempfile.gettempdir()
temp_filename = f"temp_{uuid.uuid4().hex}.jpg"
temp_path = os.path.join(temp_dir, temp_filename)
pil_image_for_processing.save(temp_path, format="JPEG")
result = model_instance.detect(temp_path)
if result is None or not hasattr(result, 'boxes'):
scene_analysis_no_yolo = self.analyze_scene(result, lighting_info, enable_landmark=enable_landmark, places365_info=places365_info)
desc_no_yolo = scene_analysis_no_yolo.get("enhanced_description", scene_analysis_no_yolo.get("description", "Detection failed, scene context analysis attempted."))
stats_data["scene_analysis"] = scene_analysis_no_yolo
if places365_info:
stats_data["places365_analysis"] = places365_info
return pil_image_for_processing, desc_no_yolo, stats_data
# 統計資訊
stats_data = EvaluationMetrics.calculate_basic_stats(result)
spatial_metrics = EvaluationMetrics.calculate_distance_metrics(result)
stats_data["spatial_metrics"] = spatial_metrics
stats_data["lighting_conditions"] = lighting_info
if places365_info:
stats_data["places365_analysis"] = places365_info
if filter_classes and len(filter_classes) > 0:
classes = result.boxes.cls.cpu().numpy().astype(int)
confs = result.boxes.conf.cpu().numpy()
mask = np.isin(classes, filter_classes)
filtered_stats_data = {
"total_objects": int(np.sum(mask)), "class_statistics": {},
"average_confidence": float(np.mean(confs[mask])) if np.any(mask) else 0.0,
"spatial_metrics": stats_data.get("spatial_metrics",{}),
"lighting_conditions": lighting_info
}
if places365_info:
filtered_stats_data["places365_analysis"] = places365_info
names = result.names
class_conf_sums = {}
for cls_id_int, conf_val in zip(classes[mask], confs[mask]):
cls_name = names[cls_id_int]
if cls_name not in filtered_stats_data["class_statistics"]:
filtered_stats_data["class_statistics"][cls_name] = {"count": 0}
class_conf_sums[cls_name] = 0.0
filtered_stats_data["class_statistics"][cls_name]["count"] += 1 # 累計統計資訊
class_conf_sums[cls_name] += conf_val
for cls_name_stat, data_stat in filtered_stats_data["class_statistics"].items():
data_stat["average_confidence"] = round(class_conf_sums[cls_name_stat] / data_stat["count"] if data_stat["count"] > 0 else 0.0, 4)
stats_data = filtered_stats_data
viz_data = EvaluationMetrics.generate_visualization_data(result, self.color_mapper.get_all_colors())
result_image_pil = VisualizationHelper.visualize_detection(
temp_path, result, color_mapper=self.color_mapper,
figsize=(12, 12), return_pil=True, filter_classes=filter_classes
)
result_text_summary = EvaluationMetrics.format_detection_summary(viz_data)
# Pass the enable_landmark parameter from function signature
# Initialize or update scene analyzer if needed
if self.scene_analyzer is None:
print("Creating SceneAnalyzer in process_image")
self.scene_analyzer = SceneAnalyzer(
class_names=result.names if result else None,
use_llm=self.use_llm,
use_clip=True,
enable_landmark=enable_landmark,
llm_model_path=self.llm_model_path
)
if self.scene_analyzer is None:
print("ERROR: Failed to create SceneAnalyzer in process_image")
else:
# Update existing scene analyzer with current settings
if result and hasattr(result, 'names'):
self.scene_analyzer.class_names = result.names
if hasattr(self.scene_analyzer, 'spatial_analyzer') and self.scene_analyzer.spatial_analyzer:
self.scene_analyzer.spatial_analyzer.class_names = result.names
self.scene_analyzer.enable_landmark = enable_landmark
if hasattr(self.scene_analyzer, 'spatial_analyzer') and self.scene_analyzer.spatial_analyzer:
self.scene_analyzer.spatial_analyzer.enable_landmark = enable_landmark
# Perform scene analysis using the existing analyze_scene method
scene_analysis_result = self.analyze_scene(
detection_result=result,
lighting_info=lighting_info,
enable_landmark=enable_landmark,
places365_info=places365_info
)
stats_data["scene_analysis"] = scene_analysis_result
final_result_text = result_text_summary
# Use enable_landmark parameter for landmark block
if enable_landmark and "detected_landmarks" in scene_analysis_result:
landmarks_detected = scene_analysis_result.get("detected_landmarks", [])
if not landmarks_detected and scene_analysis_result.get("primary_landmark"):
primary_lm = scene_analysis_result.get("primary_landmark")
if isinstance(primary_lm, dict): landmarks_detected = [primary_lm]
if landmarks_detected:
final_result_text += "\n\n--- Detected Landmarks ---\n"
# Ensure drawing on the correct PIL image
img_to_draw_on = result_image_pil.copy() # Draw on a copy
img_for_drawing_cv2 = cv2.cvtColor(np.array(img_to_draw_on), cv2.COLOR_RGB2BGR)
for landmark_item in landmarks_detected:
if not isinstance(landmark_item, dict): continue
# Use .get() for all potentially missing keys 比較保險
landmark_name_disp = landmark_item.get("class_name", landmark_item.get("name", "N/A"))
landmark_loc_disp = landmark_item.get("location", "N/A")
landmark_conf_disp = landmark_item.get("confidence", 0.0)
final_result_text += f"• {landmark_name_disp} ({landmark_loc_disp}, confidence: {landmark_conf_disp:.2f})\n"
if "box" in landmark_item:
box = landmark_item["box"]
pt1 = (int(box[0]), int(box[1])); pt2 = (int(box[2]), int(box[3]))
color_lm = (255, 0, 255); thickness_lm = 3 # Magenta BGR
cv2.rectangle(img_for_drawing_cv2, pt1, pt2, color_lm, thickness_lm)
label_lm = f"{landmark_name_disp} ({landmark_conf_disp:.2f})"
font_scale_lm = 0.6; font_thickness_lm = 1
(w_text, h_text), baseline = cv2.getTextSize(label_lm, cv2.FONT_HERSHEY_SIMPLEX, font_scale_lm, font_thickness_lm)
# Label position logic (simplified from your extensive one for brevity)
label_y_pos = pt1[1] - baseline - 3
if label_y_pos < h_text : # If label goes above image, put it below box
label_y_pos = pt2[1] + h_text + baseline + 3
label_bg_pt1 = (pt1[0], label_y_pos - h_text - baseline)
label_bg_pt2 = (pt1[0] + w_text, label_y_pos + baseline)
cv2.rectangle(img_for_drawing_cv2, label_bg_pt1, label_bg_pt2, color_lm, -1)
cv2.putText(img_for_drawing_cv2, label_lm, (pt1[0], label_y_pos),
cv2.FONT_HERSHEY_SIMPLEX, font_scale_lm, (255,255,255), font_thickness_lm, cv2.LINE_AA)
result_image_pil = Image.fromarray(cv2.cvtColor(img_for_drawing_cv2, cv2.COLOR_BGR2RGB))
return result_image_pil, final_result_text, stats_data
except Exception as e:
error_message = f"Error in ImageProcessor.process_image: {str(e)}"
import traceback
traceback.print_exc()
return pil_image_for_processing if pil_image_for_processing else None, error_message, {}
finally:
if temp_path and os.path.exists(temp_path):
try: os.remove(temp_path)
except Exception as e: print(f"Warning: Cannot delete temp file {temp_path}: {str(e)}")
def format_result_text(self, stats: Dict) -> str:
"""
Format detection statistics into readable text with improved spacing
Args:
stats: Dictionary containing detection statistics
Returns:
Formatted text summary
"""
if not stats or "total_objects" not in stats:
return "No objects detected."
# 減少不必要的空行
lines = [
f"Detected {stats['total_objects']} objects.",
f"Average confidence: {stats.get('average_confidence', 0):.2f}",
"Objects by class:"
]
if "class_statistics" in stats and stats["class_statistics"]:
# 按計數排序類別
sorted_classes = sorted(
stats["class_statistics"].items(),
key=lambda x: x[1]["count"],
reverse=True
)
for cls_name, cls_stats in sorted_classes:
count = cls_stats["count"]
conf = cls_stats.get("average_confidence", 0)
item_text = "item" if count == 1 else "items"
lines.append(f"• {cls_name}: {count} {item_text} (avg conf: {conf:.2f})")
else:
lines.append("No class information available.")
# 添加空間資訊
if "spatial_metrics" in stats and "spatial_distribution" in stats["spatial_metrics"]:
lines.append("Object Distribution:")
dist = stats["spatial_metrics"]["spatial_distribution"]
x_mean = dist.get("x_mean", 0)
y_mean = dist.get("y_mean", 0)
# 描述物體的大致位置
if x_mean < 0.33:
h_pos = "on the left side"
elif x_mean < 0.67:
h_pos = "in the center"
else:
h_pos = "on the right side"
if y_mean < 0.33:
v_pos = "in the upper part"
elif y_mean < 0.67:
v_pos = "in the middle"
else:
v_pos = "in the lower part"
lines.append(f"• Most objects appear {h_pos} {v_pos} of the image")
return "\n".join(lines)
def format_json_for_display(self, stats: Dict) -> Dict:
"""
Format statistics JSON for better display
Args:
stats: Raw statistics dictionary
Returns:
Formatted statistics structure for display
"""
# Create a cleaner copy of the stats for display
display_stats = {}
# Add summary section
display_stats["summary"] = {
"total_objects": stats.get("total_objects", 0),
"average_confidence": round(stats.get("average_confidence", 0), 3)
}
# Add class statistics in a more organized way
if "class_statistics" in stats and stats["class_statistics"]:
# Sort classes by count (descending)
sorted_classes = sorted(
stats["class_statistics"].items(),
key=lambda x: x[1].get("count", 0),
reverse=True
)
class_stats = {}
for cls_name, cls_data in sorted_classes:
class_stats[cls_name] = {
"count": cls_data.get("count", 0),
"average_confidence": round(cls_data.get("average_confidence", 0), 3)
}
display_stats["detected_objects"] = class_stats
# Simplify spatial metrics
if "spatial_metrics" in stats:
spatial = stats["spatial_metrics"]
# Simplify spatial distribution
if "spatial_distribution" in spatial:
dist = spatial["spatial_distribution"]
display_stats["spatial"] = {
"distribution": {
"x_mean": round(dist.get("x_mean", 0), 3),
"y_mean": round(dist.get("y_mean", 0), 3),
"x_std": round(dist.get("x_std", 0), 3),
"y_std": round(dist.get("y_std", 0), 3)
}
}
# Add simplified size information
if "size_distribution" in spatial:
size = spatial["size_distribution"]
display_stats["spatial"]["size"] = {
"mean_area": round(size.get("mean_area", 0), 3),
"min_area": round(size.get("min_area", 0), 3),
"max_area": round(size.get("max_area", 0), 3)
}
return display_stats
def prepare_visualization_data(self, stats: Dict, available_classes: Dict[int, str]) -> Dict:
"""
Prepare data for visualization based on detection statistics
Args:
stats: Detection statistics
available_classes: Dictionary of available class IDs and names
Returns:
Visualization data dictionary
"""
if not stats or "class_statistics" not in stats or not stats["class_statistics"]:
return {"error": "No detection data available"}
# Prepare visualization data
viz_data = {
"total_objects": stats.get("total_objects", 0),
"average_confidence": stats.get("average_confidence", 0),
"class_data": []
}
# Class data
for cls_name, cls_stats in stats.get("class_statistics", {}).items():
# Search class ID
class_id = -1
for id, name in available_classes.items():
if name == cls_name:
class_id = id
break
cls_data = {
"name": cls_name,
"class_id": class_id,
"count": cls_stats.get("count", 0),
"average_confidence": cls_stats.get("average_confidence", 0),
"color": self.color_mapper.get_color(class_id if class_id >= 0 else cls_name)
}
viz_data["class_data"].append(cls_data)
# Descending order
viz_data["class_data"].sort(key=lambda x: x["count"], reverse=True)
return viz_data