VisionScout / places365_model.py
DawnC's picture
Upload 31 files
4d1f920 verified
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
from typing import Dict, List, Tuple, Optional, Any
import logging
class Places365Model:
"""
Places365 scene classification model wrapper for scene understanding integration.
Provides scene classification and scene attribute prediction capabilities.
"""
def __init__(self, model_name: str = 'resnet50_places365', device: Optional[str] = None):
"""
Initialize Places365 model with configurable architecture and device.
Args:
model_name: Model architecture name (默認 resnet50)
device: Target device for inference (auto-detected if None)
"""
self.logger = logging.getLogger(self.__class__.__name__)
# Device configuration with fallback logic
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.model_name = model_name
self.model = None
self.scene_classes = []
self.scene_attributes = []
# Model configuration mapping
self.model_configs = {
'resnet18_places365': {
'arch': 'resnet18',
'num_classes': 365,
'url': 'http://places2.csail.mit.edu/models_places365/resnet18_places365.pth.tar'
},
'resnet50_places365': {
'arch': 'resnet50',
'num_classes': 365,
'url': 'http://places2.csail.mit.edu/models_places365/resnet50_places365.pth.tar'
},
'densenet161_places365': {
'arch': 'densenet161',
'num_classes': 365,
'url': 'http://places2.csail.mit.edu/models_places365/densenet161_places365.pth.tar'
}
}
self._load_model()
self._load_class_names()
self._setup_scene_mapping()
def _load_model(self):
"""載入與初始化 Places365 model"""
try:
if self.model_name not in self.model_configs:
raise ValueError(f"Unsupported model name: {self.model_name}")
config = self.model_configs[self.model_name]
# Import model architecture
if config['arch'].startswith('resnet'):
import torchvision.models as models
if config['arch'] == 'resnet18':
self.model = models.resnet18(num_classes=config['num_classes'])
elif config['arch'] == 'resnet50':
self.model = models.resnet50(num_classes=config['num_classes'])
elif config['arch'] == 'densenet161':
import torchvision.models as models
self.model = models.densenet161(num_classes=config['num_classes'])
# Load pretrained weights
checkpoint = torch.hub.load_state_dict_from_url(
config['url'],
map_location=self.device,
progress=True
)
# Handle different checkpoint formats
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
# Remove 'module.' prefix if present
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
else:
state_dict = checkpoint
self.model.load_state_dict(state_dict)
self.model.to(self.device)
self.model.eval()
self.logger.info(f"Places365 model {self.model_name} loaded successfully on {self.device}")
except Exception as e:
self.logger.error(f"Error loading Places365 model: {str(e)}")
raise
def _load_class_names(self):
"""Load Places365 class names and scene attributes."""
try:
# Load scene class names (365 categories)
import urllib.request
class_url = 'https://raw.githubusercontent.com/csailvision/places365/master/categories_places365.txt'
class_file = urllib.request.urlopen(class_url)
self.scene_classes = []
for line in class_file:
class_name = line.decode('utf-8').strip().split(' ')[0][3:] # Remove /x/ prefix
self.scene_classes.append(class_name)
# Load scene attributes (optional, for enhanced description)
attr_url = 'https://raw.githubusercontent.com/csailvision/places365/master/labels_sunattribute.txt'
try:
attr_file = urllib.request.urlopen(attr_url)
self.scene_attributes = []
for line in attr_file:
attr_name = line.decode('utf-8').strip()
self.scene_attributes.append(attr_name)
except:
self.logger.warning("Scene attributes not loaded, continuing with basic classification")
self.scene_attributes = []
self.logger.info(f"Loaded {len(self.scene_classes)} scene classes and {len(self.scene_attributes)} attributes")
except Exception as e:
self.logger.error(f"Error loading class names: {str(e)}")
# Fallback to basic class names if download fails
self.scene_classes = [f"scene_class_{i}" for i in range(365)]
self.scene_attributes = []
def _setup_scene_mapping(self):
"""Setup mapping from Places365 classes to common scene types."""
# 建立Places365類別到通用場景類型的映射關係
self.scene_type_mapping = {
# Indoor scenes
'living_room': 'living_room',
'bedroom': 'bedroom',
'kitchen': 'kitchen',
'dining_room': 'dining_area',
'bathroom': 'bathroom',
'office': 'office_workspace',
'conference_room': 'office_workspace',
'classroom': 'educational_setting',
'library': 'library',
'restaurant': 'restaurant',
'cafe': 'cafe',
'bar': 'bar',
'hotel_room': 'hotel_room',
'hospital_room': 'medical_facility',
'gym': 'gym',
'supermarket': 'retail_store',
'clothing_store': 'retail_store',
# Outdoor urban scenes
'street': 'city_street',
'crosswalk': 'intersection',
'parking_lot': 'parking_lot',
'gas_station': 'gas_station',
'bus_station': 'bus_stop',
'train_station': 'train_station',
'airport_terminal': 'airport',
'subway_station': 'subway_station',
'bridge': 'bridge',
'highway': 'highway',
'downtown': 'commercial_district',
'shopping_mall': 'shopping_mall',
# Natural outdoor scenes
'park': 'park_area',
'beach': 'beach',
'forest': 'forest',
'mountain': 'mountain',
'lake': 'lake',
'river': 'river',
'ocean': 'ocean',
'desert': 'desert',
'field': 'field',
'garden': 'garden',
# Landmark and tourist areas
'castle': 'historical_monument',
'palace': 'historical_monument',
'temple': 'temple',
'church': 'church',
'mosque': 'mosque',
'museum': 'museum',
'art_gallery': 'art_gallery',
'tower': 'tourist_landmark',
'monument': 'historical_monument',
# Sports and entertainment
'stadium': 'stadium',
'basketball_court': 'sports_field',
'tennis_court': 'sports_field',
'swimming_pool': 'swimming_pool',
'playground': 'playground',
'amusement_park': 'amusement_park',
'theater': 'theater',
'concert_hall': 'concert_hall',
# Transportation
'airplane_cabin': 'airplane_cabin',
'train_interior': 'train_interior',
'car_interior': 'car_interior',
# Construction and industrial
'construction_site': 'construction_site',
'factory': 'factory',
'warehouse': 'warehouse'
}
# Indoor/outdoor classification helper
self.indoor_classes = {
'living_room', 'bedroom', 'kitchen', 'dining_room', 'bathroom', 'office',
'conference_room', 'classroom', 'library', 'restaurant', 'cafe', 'bar',
'hotel_room', 'hospital_room', 'gym', 'supermarket', 'clothing_store',
'airplane_cabin', 'train_interior', 'car_interior', 'theater', 'concert_hall',
'museum', 'art_gallery', 'shopping_mall'
}
self.outdoor_classes = {
'street', 'crosswalk', 'parking_lot', 'gas_station', 'bus_station',
'train_station', 'airport_terminal', 'bridge', 'highway', 'downtown',
'park', 'beach', 'forest', 'mountain', 'lake', 'river', 'ocean',
'desert', 'field', 'garden', 'stadium', 'basketball_court', 'tennis_court',
'swimming_pool', 'playground', 'amusement_park', 'construction_site',
'factory', 'warehouse', 'castle', 'palace', 'temple', 'church', 'mosque',
'tower', 'monument'
}
def preprocess(self, image_pil: Image.Image) -> torch.Tensor:
"""
Preprocess PIL image for Places365 model inference.
Args:
image_pil: Input PIL image
Returns:
torch.Tensor: Preprocessed image tensor
"""
# Places365 standard preprocessing
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Convert to RGB if needed
if image_pil.mode != 'RGB':
image_pil = image_pil.convert('RGB')
# Apply preprocessing
input_tensor = transform(image_pil).unsqueeze(0)
return input_tensor.to(self.device)
def predict(self, image_pil: Image.Image) -> Dict[str, Any]:
"""
Predict scene classification and attributes for input image.
Args:
image_pil: Input PIL image
Returns:
Dict containing scene predictions and confidence scores
"""
try:
# Preprocess image
input_tensor = self.preprocess(image_pil)
# Model inference
with torch.no_grad():
outputs = self.model(input_tensor)
probabilities = torch.nn.functional.softmax(outputs, dim=1)
# 返回最有可能的項目
top_k = min(10, len(self.scene_classes)) # Configurable top-k
top_probs, top_indices = torch.topk(probabilities, top_k, dim=1)
# Extract results
top_probs = top_probs.cpu().numpy()[0]
top_indices = top_indices.cpu().numpy()[0]
# Build prediction results
predictions = []
for i in range(top_k):
class_idx = top_indices[i]
confidence = float(top_probs[i])
scene_class = self.scene_classes[class_idx]
predictions.append({
'class_name': scene_class,
'class_index': class_idx,
'confidence': confidence
})
# Get primary prediction
primary_prediction = predictions[0]
primary_class = primary_prediction['class_name']
# 確認是 indoor/outdoor
is_indoor = self._classify_indoor_outdoor(primary_class)
# Map to common scene type
mapped_scene_type = self._map_places365_to_scene_types(primary_class)
# Determine scene attributes (basic inference based on class)
scene_attributes = self._infer_scene_attributes(primary_class)
result = {
'scene_label': primary_class,
'mapped_scene_type': mapped_scene_type,
'confidence': primary_prediction['confidence'],
'is_indoor': is_indoor,
'attributes': scene_attributes,
'top_predictions': predictions,
'all_probabilities': probabilities.cpu().numpy()[0].tolist()
}
return result
except Exception as e:
self.logger.error(f"Error in Places365 prediction: {str(e)}")
return {
'scene_label': 'unknown',
'mapped_scene_type': 'unknown',
'confidence': 0.0,
'is_indoor': None,
'attributes': [],
'top_predictions': [],
'error': str(e)
}
def _classify_indoor_outdoor(self, scene_class: str) -> Optional[bool]:
"""
Classify if scene is indoor or outdoor based on Places365 class.
Args:
scene_class: Places365 scene class name
Returns:
bool or None: True for indoor, False for outdoor, None if uncertain
"""
if scene_class in self.indoor_classes:
return True
elif scene_class in self.outdoor_classes:
return False
else:
# For ambiguous classes, use heuristics
indoor_keywords = ['room', 'office', 'store', 'shop', 'hall', 'interior', 'indoor']
outdoor_keywords = ['street', 'road', 'park', 'field', 'beach', 'mountain', 'outdoor']
scene_lower = scene_class.lower()
if any(keyword in scene_lower for keyword in indoor_keywords):
return True
elif any(keyword in scene_lower for keyword in outdoor_keywords):
return False
else:
return None
def _map_places365_to_scene_types(self, places365_class: str) -> str:
"""
Map Places365 class to common scene type used by the system.
Args:
places365_class: Places365 scene class name
Returns:
str: Mapped scene type
"""
# Direct mapping lookup
if places365_class in self.scene_type_mapping:
return self.scene_type_mapping[places365_class]
# Fuzzy matching for similar classes
places365_lower = places365_class.lower()
# Indoor fuzzy matching
if any(keyword in places365_lower for keyword in ['living', 'bedroom', 'kitchen']):
return 'general_indoor_space'
elif any(keyword in places365_lower for keyword in ['office', 'conference', 'meeting']):
return 'office_workspace'
elif any(keyword in places365_lower for keyword in ['dining', 'restaurant', 'cafe']):
return 'dining_area'
elif any(keyword in places365_lower for keyword in ['store', 'shop', 'market']):
return 'retail_store'
elif any(keyword in places365_lower for keyword in ['school', 'class', 'library']):
return 'educational_setting'
# Outdoor fuzzy matching
elif any(keyword in places365_lower for keyword in ['street', 'road', 'crosswalk']):
return 'city_street'
elif any(keyword in places365_lower for keyword in ['park', 'garden', 'plaza']):
return 'park_area'
elif any(keyword in places365_lower for keyword in ['beach', 'ocean', 'lake']):
return 'beach'
elif any(keyword in places365_lower for keyword in ['mountain', 'forest', 'desert']):
return 'natural_outdoor_area'
elif any(keyword in places365_lower for keyword in ['parking', 'garage']):
return 'parking_lot'
elif any(keyword in places365_lower for keyword in ['station', 'terminal', 'airport']):
return 'transportation_hub'
# Landmark fuzzy matching
elif any(keyword in places365_lower for keyword in ['castle', 'palace', 'monument', 'temple']):
return 'historical_monument'
elif any(keyword in places365_lower for keyword in ['tower', 'landmark']):
return 'tourist_landmark'
elif any(keyword in places365_lower for keyword in ['museum', 'gallery']):
return 'cultural_venue'
# Default fallback based on indoor/outdoor
is_indoor = self._classify_indoor_outdoor(places365_class)
if is_indoor is True:
return 'general_indoor_space'
elif is_indoor is False:
return 'generic_street_view'
else:
return 'unknown'
def _infer_scene_attributes(self, scene_class: str) -> List[str]:
"""
Infer basic scene attributes from Places365 class.
Args:
scene_class: Places365 scene class name
Returns:
List[str]: Inferred scene attributes
"""
attributes = []
scene_lower = scene_class.lower()
# Lighting attributes
if any(keyword in scene_lower for keyword in ['outdoor', 'street', 'park', 'beach']):
attributes.append('natural_lighting')
elif any(keyword in scene_lower for keyword in ['indoor', 'room', 'office']):
attributes.append('artificial_lighting')
# Functional attributes
if any(keyword in scene_lower for keyword in ['commercial', 'store', 'shop', 'restaurant']):
attributes.append('commercial')
elif any(keyword in scene_lower for keyword in ['residential', 'home', 'living', 'bedroom']):
attributes.append('residential')
elif any(keyword in scene_lower for keyword in ['office', 'conference', 'meeting']):
attributes.append('workplace')
elif any(keyword in scene_lower for keyword in ['recreation', 'park', 'playground', 'stadium']):
attributes.append('recreational')
elif any(keyword in scene_lower for keyword in ['educational', 'school', 'library', 'classroom']):
attributes.append('educational')
# Spatial attributes
if any(keyword in scene_lower for keyword in ['open', 'field', 'plaza', 'stadium']):
attributes.append('open_space')
elif any(keyword in scene_lower for keyword in ['enclosed', 'room', 'interior']):
attributes.append('enclosed_space')
return attributes
def get_scene_probabilities(self, image_pil: Image.Image) -> Dict[str, float]:
"""
Get probability distribution over all scene classes.
Args:
image_pil: Input PIL image
Returns:
Dict mapping scene class names to probabilities
"""
try:
input_tensor = self.preprocess(image_pil)
with torch.no_grad():
outputs = self.model(input_tensor)
probabilities = torch.nn.functional.softmax(outputs, dim=1)
probs = probabilities.cpu().numpy()[0]
return {
self.scene_classes[i]: float(probs[i])
for i in range(len(self.scene_classes))
}
except Exception as e:
self.logger.error(f"Error getting scene probabilities: {str(e)}")
return {}