Spaces:
Running
on
Zero
Running
on
Zero
Delete model_manager.py
Browse files- model_manager.py +0 -358
model_manager.py
DELETED
|
@@ -1,358 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
-
import logging
|
| 4 |
-
from typing import Dict, Optional, Any
|
| 5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 6 |
-
from huggingface_hub import login
|
| 7 |
-
|
| 8 |
-
class ModelLoadingError(Exception):
|
| 9 |
-
"""Custom exception for model loading failures"""
|
| 10 |
-
pass
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
class ModelGenerationError(Exception):
|
| 14 |
-
"""Custom exception for model generation failures"""
|
| 15 |
-
pass
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class ModelManager:
|
| 19 |
-
"""
|
| 20 |
-
負責LLM模型的載入、設備管理和文本生成。
|
| 21 |
-
管理模型、記憶體優化和設備配置。
|
| 22 |
-
"""
|
| 23 |
-
|
| 24 |
-
def __init__(self,
|
| 25 |
-
model_path: Optional[str] = None,
|
| 26 |
-
tokenizer_path: Optional[str] = None,
|
| 27 |
-
device: Optional[str] = None,
|
| 28 |
-
max_length: int = 2048,
|
| 29 |
-
temperature: float = 0.3,
|
| 30 |
-
top_p: float = 0.85):
|
| 31 |
-
"""
|
| 32 |
-
初始化模型管理器
|
| 33 |
-
|
| 34 |
-
Args:
|
| 35 |
-
model_path: LLM模型的路徑或HuggingFace模型名稱,默認使用Llama 3.2
|
| 36 |
-
tokenizer_path: tokenizer的路徑,通常與model_path相同
|
| 37 |
-
device: 運行設備 ('cpu'或'cuda'),None時自動檢測
|
| 38 |
-
max_length: 輸入文本的最大長度
|
| 39 |
-
temperature: 生成文本的溫度參數
|
| 40 |
-
top_p: 生成文本時的核心採樣機率閾值
|
| 41 |
-
"""
|
| 42 |
-
# 設置專屬logger
|
| 43 |
-
self.logger = logging.getLogger(self.__class__.__name__)
|
| 44 |
-
if not self.logger.handlers:
|
| 45 |
-
handler = logging.StreamHandler()
|
| 46 |
-
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 47 |
-
handler.setFormatter(formatter)
|
| 48 |
-
self.logger.addHandler(handler)
|
| 49 |
-
self.logger.setLevel(logging.INFO)
|
| 50 |
-
|
| 51 |
-
# 模型配置
|
| 52 |
-
self.model_path = model_path or "meta-llama/Llama-3.2-3B-Instruct"
|
| 53 |
-
self.tokenizer_path = tokenizer_path or self.model_path
|
| 54 |
-
|
| 55 |
-
# 設備管理
|
| 56 |
-
self.device = self._detect_device(device)
|
| 57 |
-
self.logger.info(f"Device selected: {self.device}")
|
| 58 |
-
|
| 59 |
-
# 生成參數
|
| 60 |
-
self.max_length = max_length
|
| 61 |
-
self.temperature = temperature
|
| 62 |
-
self.top_p = top_p
|
| 63 |
-
|
| 64 |
-
# 模型狀態
|
| 65 |
-
self.model = None
|
| 66 |
-
self.tokenizer = None
|
| 67 |
-
self._model_loaded = False
|
| 68 |
-
self.call_count = 0
|
| 69 |
-
|
| 70 |
-
# HuggingFace認證
|
| 71 |
-
self.hf_token = self._setup_huggingface_auth()
|
| 72 |
-
|
| 73 |
-
def _detect_device(self, device: Optional[str]) -> str:
|
| 74 |
-
"""
|
| 75 |
-
檢測並設置運行設備
|
| 76 |
-
|
| 77 |
-
Args:
|
| 78 |
-
device: 用戶指定的設備,None時自動檢測
|
| 79 |
-
|
| 80 |
-
Returns:
|
| 81 |
-
str: ('cuda' or 'cpu')
|
| 82 |
-
"""
|
| 83 |
-
if device:
|
| 84 |
-
if device == 'cuda' and not torch.cuda.is_available():
|
| 85 |
-
self.logger.warning("CUDA requested but not available, falling back to CPU")
|
| 86 |
-
return 'cpu'
|
| 87 |
-
return device
|
| 88 |
-
|
| 89 |
-
detected_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 90 |
-
|
| 91 |
-
if detected_device == 'cuda':
|
| 92 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
| 93 |
-
self.logger.info(f"CUDA detected with {gpu_memory:.2f} GB GPU memory")
|
| 94 |
-
|
| 95 |
-
return detected_device
|
| 96 |
-
|
| 97 |
-
def _setup_huggingface_auth(self) -> Optional[str]:
|
| 98 |
-
"""
|
| 99 |
-
設置HuggingFace認證
|
| 100 |
-
|
| 101 |
-
Returns:
|
| 102 |
-
Optional[str]: HuggingFace token,如果可用
|
| 103 |
-
"""
|
| 104 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 105 |
-
|
| 106 |
-
if hf_token:
|
| 107 |
-
try:
|
| 108 |
-
login(token=hf_token)
|
| 109 |
-
self.logger.info("Successfully authenticated with HuggingFace")
|
| 110 |
-
return hf_token
|
| 111 |
-
except Exception as e:
|
| 112 |
-
self.logger.error(f"HuggingFace authentication failed: {e}")
|
| 113 |
-
return None
|
| 114 |
-
else:
|
| 115 |
-
self.logger.warning("HF_TOKEN not found. Access to gated models may be limited")
|
| 116 |
-
return None
|
| 117 |
-
|
| 118 |
-
def _load_model(self):
|
| 119 |
-
"""
|
| 120 |
-
載入LLM模型和tokenizer,使用8位量化以節省記憶體
|
| 121 |
-
|
| 122 |
-
Raises:
|
| 123 |
-
ModelLoadingError: 當模型載入失敗時
|
| 124 |
-
"""
|
| 125 |
-
if self._model_loaded:
|
| 126 |
-
return
|
| 127 |
-
|
| 128 |
-
try:
|
| 129 |
-
self.logger.info(f"Loading model from {self.model_path} with 8-bit quantization")
|
| 130 |
-
|
| 131 |
-
# 清理GPU記憶體
|
| 132 |
-
self._clear_gpu_cache()
|
| 133 |
-
|
| 134 |
-
# 設置8位量化配置
|
| 135 |
-
quantization_config = BitsAndBytesConfig(
|
| 136 |
-
load_in_8bit=True,
|
| 137 |
-
llm_int8_enable_fp32_cpu_offload=True
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
-
# 載入tokenizer
|
| 141 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 142 |
-
self.tokenizer_path,
|
| 143 |
-
padding_side="left",
|
| 144 |
-
use_fast=False,
|
| 145 |
-
token=self.hf_token
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
# 設置特殊標記
|
| 149 |
-
if self.tokenizer.pad_token is None:
|
| 150 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 151 |
-
|
| 152 |
-
# 載入模型
|
| 153 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 154 |
-
self.model_path,
|
| 155 |
-
quantization_config=quantization_config,
|
| 156 |
-
device_map="auto",
|
| 157 |
-
low_cpu_mem_usage=True,
|
| 158 |
-
token=self.hf_token
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
self._model_loaded = True
|
| 162 |
-
self.logger.info("Model loaded successfully")
|
| 163 |
-
|
| 164 |
-
except Exception as e:
|
| 165 |
-
error_msg = f"Failed to load model: {str(e)}"
|
| 166 |
-
self.logger.error(error_msg)
|
| 167 |
-
raise ModelLoadingError(error_msg) from e
|
| 168 |
-
|
| 169 |
-
def _clear_gpu_cache(self):
|
| 170 |
-
"""清理GPU記憶體緩存"""
|
| 171 |
-
if torch.cuda.is_available():
|
| 172 |
-
torch.cuda.empty_cache()
|
| 173 |
-
self.logger.debug("GPU cache cleared")
|
| 174 |
-
|
| 175 |
-
def generate_response(self, prompt: str, **generation_kwargs) -> str:
|
| 176 |
-
"""
|
| 177 |
-
生成LLM回應
|
| 178 |
-
|
| 179 |
-
Args:
|
| 180 |
-
prompt: 輸入提示詞
|
| 181 |
-
**generation_kwargs: 額外的生成參數,可覆蓋預設值
|
| 182 |
-
|
| 183 |
-
Returns:
|
| 184 |
-
str: 生成的回應文本
|
| 185 |
-
|
| 186 |
-
Raises:
|
| 187 |
-
ModelGenerationError: 當生成失敗時
|
| 188 |
-
"""
|
| 189 |
-
# 確保模型已載入
|
| 190 |
-
if not self._model_loaded:
|
| 191 |
-
self._load_model()
|
| 192 |
-
|
| 193 |
-
try:
|
| 194 |
-
self.call_count += 1
|
| 195 |
-
self.logger.info(f"Generating response (call #{self.call_count})")
|
| 196 |
-
|
| 197 |
-
# clean GPU
|
| 198 |
-
self._clear_gpu_cache()
|
| 199 |
-
|
| 200 |
-
# 設置固定種子以提高一致性
|
| 201 |
-
torch.manual_seed(42)
|
| 202 |
-
|
| 203 |
-
# prepare input
|
| 204 |
-
inputs = self.tokenizer(
|
| 205 |
-
prompt,
|
| 206 |
-
return_tensors="pt",
|
| 207 |
-
truncation=True,
|
| 208 |
-
max_length=self.max_length
|
| 209 |
-
).to(self.device)
|
| 210 |
-
|
| 211 |
-
# 準備生成參數
|
| 212 |
-
generation_params = self._prepare_generation_params(**generation_kwargs)
|
| 213 |
-
generation_params.update({
|
| 214 |
-
"pad_token_id": self.tokenizer.eos_token_id,
|
| 215 |
-
"attention_mask": inputs.attention_mask,
|
| 216 |
-
"use_cache": True,
|
| 217 |
-
})
|
| 218 |
-
|
| 219 |
-
# resposne
|
| 220 |
-
with torch.no_grad():
|
| 221 |
-
outputs = self.model.generate(inputs.input_ids, **generation_params)
|
| 222 |
-
|
| 223 |
-
# 解碼回應
|
| 224 |
-
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 225 |
-
response = self._extract_generated_response(full_response, prompt)
|
| 226 |
-
|
| 227 |
-
if not response or len(response.strip()) < 10:
|
| 228 |
-
raise ModelGenerationError("Generated response is too short or empty")
|
| 229 |
-
|
| 230 |
-
self.logger.info(f"Response generated successfully ({len(response)} characters)")
|
| 231 |
-
return response
|
| 232 |
-
|
| 233 |
-
except Exception as e:
|
| 234 |
-
error_msg = f"Text generation failed: {str(e)}"
|
| 235 |
-
self.logger.error(error_msg)
|
| 236 |
-
raise ModelGenerationError(error_msg) from e
|
| 237 |
-
|
| 238 |
-
def _prepare_generation_params(self, **kwargs) -> Dict[str, Any]:
|
| 239 |
-
"""
|
| 240 |
-
準備生成參數,支援模型特定的優化
|
| 241 |
-
|
| 242 |
-
Args:
|
| 243 |
-
**kwargs: 用戶提供的生成參數
|
| 244 |
-
|
| 245 |
-
Returns:
|
| 246 |
-
Dict[str, Any]: 完整的生成參數配置
|
| 247 |
-
"""
|
| 248 |
-
# basic parameters
|
| 249 |
-
params = {
|
| 250 |
-
"max_new_tokens": 120,
|
| 251 |
-
"temperature": self.temperature,
|
| 252 |
-
"top_p": self.top_p,
|
| 253 |
-
"do_sample": True,
|
| 254 |
-
}
|
| 255 |
-
|
| 256 |
-
# 針對Llama模型的特殊優化
|
| 257 |
-
if "llama" in self.model_path.lower():
|
| 258 |
-
params.update({
|
| 259 |
-
"max_new_tokens": 600,
|
| 260 |
-
"temperature": 0.35, # not too big
|
| 261 |
-
"top_p": 0.75,
|
| 262 |
-
"repetition_penalty": 1.5,
|
| 263 |
-
"num_beams": 5,
|
| 264 |
-
"length_penalty": 1,
|
| 265 |
-
"no_repeat_ngram_size": 3
|
| 266 |
-
})
|
| 267 |
-
else:
|
| 268 |
-
params.update({
|
| 269 |
-
"max_new_tokens": 300,
|
| 270 |
-
"temperature": 0.6,
|
| 271 |
-
"top_p": 0.9,
|
| 272 |
-
"num_beams": 1,
|
| 273 |
-
"repetition_penalty": 1.05
|
| 274 |
-
})
|
| 275 |
-
|
| 276 |
-
# 用戶參數覆蓋預設值
|
| 277 |
-
params.update(kwargs)
|
| 278 |
-
|
| 279 |
-
return params
|
| 280 |
-
|
| 281 |
-
def _extract_generated_response(self, full_response: str, prompt: str) -> str:
|
| 282 |
-
"""
|
| 283 |
-
從完整回應中提取生成的部分
|
| 284 |
-
|
| 285 |
-
Args:
|
| 286 |
-
full_response: 模型的完整輸出
|
| 287 |
-
prompt: 原始提示詞
|
| 288 |
-
|
| 289 |
-
Returns:
|
| 290 |
-
str: 提取的生成回應
|
| 291 |
-
"""
|
| 292 |
-
# 尋找assistant標記
|
| 293 |
-
assistant_tag = "<|assistant|>"
|
| 294 |
-
if assistant_tag in full_response:
|
| 295 |
-
response = full_response.split(assistant_tag)[-1].strip()
|
| 296 |
-
|
| 297 |
-
# 檢查是否有未閉合的user標記
|
| 298 |
-
user_tag = "<|user|>"
|
| 299 |
-
if user_tag in response:
|
| 300 |
-
response = response.split(user_tag)[0].strip()
|
| 301 |
-
|
| 302 |
-
return response
|
| 303 |
-
|
| 304 |
-
# 移除輸入提示詞
|
| 305 |
-
if full_response.startswith(prompt):
|
| 306 |
-
return full_response[len(prompt):].strip()
|
| 307 |
-
|
| 308 |
-
return full_response.strip()
|
| 309 |
-
|
| 310 |
-
def reset_context(self):
|
| 311 |
-
"""重置模型上下文,清理GPU緩存"""
|
| 312 |
-
if self._model_loaded:
|
| 313 |
-
self._clear_gpu_cache()
|
| 314 |
-
self.logger.info("Model context reset")
|
| 315 |
-
else:
|
| 316 |
-
self.logger.info("Model not loaded, no context to reset")
|
| 317 |
-
|
| 318 |
-
def get_current_device(self) -> str:
|
| 319 |
-
"""
|
| 320 |
-
獲取當前運行設備
|
| 321 |
-
|
| 322 |
-
Returns:
|
| 323 |
-
str: 當前設備名稱
|
| 324 |
-
"""
|
| 325 |
-
return self.device
|
| 326 |
-
|
| 327 |
-
def is_model_loaded(self) -> bool:
|
| 328 |
-
"""
|
| 329 |
-
檢查模型是否已載入
|
| 330 |
-
|
| 331 |
-
Returns:
|
| 332 |
-
bool: 模型載入狀態
|
| 333 |
-
"""
|
| 334 |
-
return self._model_loaded
|
| 335 |
-
|
| 336 |
-
def get_call_count(self) -> int:
|
| 337 |
-
"""
|
| 338 |
-
獲取模型調用次數
|
| 339 |
-
|
| 340 |
-
Returns:
|
| 341 |
-
int: 調用次數
|
| 342 |
-
"""
|
| 343 |
-
return self.call_count
|
| 344 |
-
|
| 345 |
-
def get_model_info(self) -> Dict[str, Any]:
|
| 346 |
-
"""
|
| 347 |
-
獲取模型信息
|
| 348 |
-
|
| 349 |
-
Returns:
|
| 350 |
-
Dict[str, Any]: 包含模型路徑、設備、載入狀態等信息
|
| 351 |
-
"""
|
| 352 |
-
return {
|
| 353 |
-
"model_path": self.model_path,
|
| 354 |
-
"device": self.device,
|
| 355 |
-
"is_loaded": self._model_loaded,
|
| 356 |
-
"call_count": self.call_count,
|
| 357 |
-
"has_hf_token": self.hf_token is not None
|
| 358 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|