File size: 6,505 Bytes
9e08541 dd04a0c 9e08541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
from langchain_huggingface import HuggingFaceEndpoint
import streamlit as st
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
model_id="Dazan/fnl"
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
"""
Returns a language model for HuggingFace inference.
Parameters:
- model_id (str): The ID of the HuggingFace model repository.
- max_new_tokens (int): The maximum number of new tokens to generate.
- temperature (float): The temperature for sampling from the model.
Returns:
- llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
"""
llm = HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token = os.getenv("HF_TOKEN")
)
return llm
# Configure the Streamlit app
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="π€")
st.title("Personal HuggingFace ChatBot")
st.markdown(f"*This is a simple chatbot that uses the HuggingFace transformers library to generate responses to your text input. It uses the {model_id}.*")
# Initialize session state for avatars
if "avatars" not in st.session_state:
st.session_state.avatars = {'user': None, 'assistant': None}
# Initialize session state for user text input
if 'user_text' not in st.session_state:
st.session_state.user_text = None
# Initialize session state for model parameters
if "max_response_length" not in st.session_state:
st.session_state.max_response_length = 256
if "system_message" not in st.session_state:
st.session_state.system_message = "friendly AI conversing with a human user"
if "starter_message" not in st.session_state:
st.session_state.starter_message = "Hello, there! How can I help you today?"
# Sidebar for settings
with st.sidebar:
st.header("System Settings")
# AI Settings
st.session_state.system_message = st.text_area(
"System Message", value="You are a friendly AI conversing with a human user."
)
st.session_state.starter_message = st.text_area(
'First AI Message', value="Hello, there! How can I help you today?"
)
# Model Settings
st.session_state.max_response_length = st.number_input(
"Max Response Length", value=128
)
# Avatar Selection
st.markdown("*Select Avatars:*")
col1, col2 = st.columns(2)
with col1:
st.session_state.avatars['assistant'] = st.selectbox(
"AI Avatar", options=["π€", "π¬", "π€"], index=0
)
with col2:
st.session_state.avatars['user'] = st.selectbox(
"User Avatar", options=["π€", "π±ββοΈ", "π¨πΎ", "π©", "π§πΎ"], index=0
)
# Reset Chat History
reset_history = st.button("Reset Chat History")
# Initialize or reset chat history
if "chat_history" not in st.session_state or reset_history:
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
def get_response(system_message, chat_history, user_text,
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
"""
Generates a response from the chatbot model.
Args:
system_message (str): The system message for the conversation.
chat_history (list): The list of previous chat messages.
user_text (str): The user's input text.
model_id (str, optional): The ID of the HuggingFace model to use.
eos_token_id (list, optional): The list of end-of-sentence token IDs.
max_new_tokens (int, optional): The maximum number of new tokens to generate.
get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function.
Returns:
tuple: A tuple containing the generated response and the updated chat history.
"""
# Set up the model
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
# Create the prompt template
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}"
"\nCurrent Conversation:\n{chat_history}\n\n"
"\nUser: {user_text}.\n [/INST]"
"\nAI:"
)
)
# Make the chain and bind the prompt
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
# Generate the response
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("AI:")[-1]
# Update the chat history
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
return response, chat_history
# Chat interface
chat_interface = st.container(border=True)
with chat_interface:
output_container = st.container()
st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
# Display chat messages
with output_container:
# For every message in the history
for message in st.session_state.chat_history:
# Skip the system message
if message['role'] == 'system':
continue
# Display the chat message using the correct avatar
with st.chat_message(message['role'],
avatar=st.session_state['avatars'][message['role']]):
st.markdown(message['content'])
# When the user enter new text:
if st.session_state.user_text:
# Display the user's new message immediately
with st.chat_message("user",
avatar=st.session_state.avatars['user']):
st.markdown(st.session_state.user_text)
# Display a spinner status bar while waiting for the response
with st.chat_message("assistant",
avatar=st.session_state.avatars['assistant']):
with st.spinner("Thinking..."):
# Call the Inference API with the system_prompt, user text, and history
response, st.session_state.chat_history = get_response(
system_message=st.session_state.system_message,
user_text=st.session_state.user_text,
chat_history=st.session_state.chat_history,
max_new_tokens=st.session_state.max_response_length,
)
st.markdown(response) |