File size: 3,144 Bytes
e954d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import MultiTaskLasso, Lasso
import gradio as gr

rng = np.random.RandomState(42)

# Generate some 2D coefficients with sine waves with random frequency and phase
def make_plot(n_samples, n_features, n_tasks, n_relevant_features, alpha):

    coef = np.zeros((n_tasks, n_features))
    times = np.linspace(0, 2 * np.pi, n_tasks)
    for k in range(n_relevant_features):
        coef[:, k] = np.sin((1.0 + rng.randn(1)) * times + 3 * rng.randn(1))

    X = rng.randn(n_samples, n_features)
    Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)

    coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])
    coef_multi_task_lasso_ = MultiTaskLasso(alpha=alpha).fit(X, Y).coef_

    fig = plt.figure(figsize=(8, 5))

    feature_to_plot = 0
    fig = plt.figure()
    lw = 2
    plt.plot(coef[:, feature_to_plot], color="seagreen", linewidth=lw, label="Ground truth")
    plt.plot(
        coef_lasso_[:, feature_to_plot], color="cornflowerblue", linewidth=lw, label="Lasso"
    )
    plt.plot(
        coef_multi_task_lasso_[:, feature_to_plot],
        color="gold",
        linewidth=lw,
        label="MultiTaskLasso",
    )
    plt.legend(loc="upper center")
    plt.axis("tight")
    plt.ylim([-1.1, 1.1])
    fig.suptitle("Lasso, MultiTaskLasso and Ground truth time series")
    return fig


model_card=f"""
## Description
The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected
features to be the same across tasks. This example simulates sequential measurements, each task
is a time instant, and the relevant features vary in amplitude over time while being the same.
The multi-task lasso imposes that features that are selected at one time point are select
for all time point. This makes feature selection by the Lasso more stable.
## Model
currentmodule: sklearn.linear_model
class:`Lasso` and class: `MultiTaskLasso` are used in this example.
Plots represent Lasso, MultiTaskLasso and Ground truth time series
"""

with gr.Blocks() as demo:
    gr.Markdown('''
            <div>
            <h1 style='text-align: center'> Joint feature selection with multi-task Lasso </h1>
            </div>
        ''')
    gr.Markdown(model_card)
    gr.Markdown("Original example Author: Alexandre Gramfort <[email protected]>")
    gr.Markdown(
        "Iterative conversion by: <a href=\"https://github.com/DeaMariaLeon\">Dea María Léon</a>"
    )
    n_samples = gr.Slider(50,500,value=100,step=50,label='Select number of samples')
    n_features = gr.Slider(5,50,value=30,step=5,label='Select number of features')
    n_tasks = gr.Slider(5,50,value=40,step=5,label='Select number of tasks')
    n_relevant_features = gr.Slider(1,10,value=5,step=1,label='Select number of relevant_features')
    with gr.Column():
        with gr.Tab('Select Alpha Range'):
            alpha = gr.Slider(0,10,value=1.0,step=0.5,label='alpha')

    btn = gr.Button(value = 'Submit')

    btn.click(make_plot,inputs=[n_samples,n_features, n_tasks, n_relevant_features, alpha],outputs=[gr.Plot()])

demo.launch()