Delete Final.ipynb
Browse files- Final.ipynb +0 -152
Final.ipynb
DELETED
@@ -1,152 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"id": "896cacc6",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [
|
9 |
-
{
|
10 |
-
"name": "stdout",
|
11 |
-
"output_type": "stream",
|
12 |
-
"text": [
|
13 |
-
"Running on local URL: http://127.0.0.1:7860\n",
|
14 |
-
"\n",
|
15 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
16 |
-
]
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"data": {
|
20 |
-
"text/html": [
|
21 |
-
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
22 |
-
],
|
23 |
-
"text/plain": [
|
24 |
-
"<IPython.core.display.HTML object>"
|
25 |
-
]
|
26 |
-
},
|
27 |
-
"metadata": {},
|
28 |
-
"output_type": "display_data"
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"data": {
|
32 |
-
"text/plain": []
|
33 |
-
},
|
34 |
-
"execution_count": 1,
|
35 |
-
"metadata": {},
|
36 |
-
"output_type": "execute_result"
|
37 |
-
}
|
38 |
-
],
|
39 |
-
"source": [
|
40 |
-
"import numpy as np\n",
|
41 |
-
"import matplotlib.pyplot as plt\n",
|
42 |
-
"from sklearn.linear_model import MultiTaskLasso, Lasso\n",
|
43 |
-
"import gradio as gr\n",
|
44 |
-
"\n",
|
45 |
-
"rng = np.random.RandomState(42)\n",
|
46 |
-
"\n",
|
47 |
-
"# Generate some 2D coefficients with sine waves with random frequency and phase\n",
|
48 |
-
"def make_plot(n_samples, n_features, n_tasks, n_relevant_features, alpha):\n",
|
49 |
-
" \n",
|
50 |
-
" coef = np.zeros((n_tasks, n_features))\n",
|
51 |
-
" times = np.linspace(0, 2 * np.pi, n_tasks)\n",
|
52 |
-
" for k in range(n_relevant_features):\n",
|
53 |
-
" coef[:, k] = np.sin((1.0 + rng.randn(1)) * times + 3 * rng.randn(1))\n",
|
54 |
-
" \n",
|
55 |
-
" X = rng.randn(n_samples, n_features)\n",
|
56 |
-
" Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)\n",
|
57 |
-
" \n",
|
58 |
-
" coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])\n",
|
59 |
-
" coef_multi_task_lasso_ = MultiTaskLasso(alpha=alpha).fit(X, Y).coef_\n",
|
60 |
-
" \n",
|
61 |
-
" fig = plt.figure(figsize=(8, 5))\n",
|
62 |
-
" \n",
|
63 |
-
" feature_to_plot = 0\n",
|
64 |
-
" fig = plt.figure()\n",
|
65 |
-
" lw = 2\n",
|
66 |
-
" plt.plot(coef[:, feature_to_plot], color=\"seagreen\", linewidth=lw, label=\"Ground truth\")\n",
|
67 |
-
" plt.plot(\n",
|
68 |
-
" coef_lasso_[:, feature_to_plot], color=\"cornflowerblue\", linewidth=lw, label=\"Lasso\"\n",
|
69 |
-
" )\n",
|
70 |
-
" plt.plot(\n",
|
71 |
-
" coef_multi_task_lasso_[:, feature_to_plot],\n",
|
72 |
-
" color=\"gold\",\n",
|
73 |
-
" linewidth=lw,\n",
|
74 |
-
" label=\"MultiTaskLasso\",\n",
|
75 |
-
" )\n",
|
76 |
-
" plt.legend(loc=\"upper center\")\n",
|
77 |
-
" plt.axis(\"tight\")\n",
|
78 |
-
" plt.ylim([-1.1, 1.1])\n",
|
79 |
-
" fig.suptitle(\"Lasso, MultiTaskLasso and Ground truth time series\")\n",
|
80 |
-
" return fig\n",
|
81 |
-
" \n",
|
82 |
-
" \n",
|
83 |
-
"model_card=f\"\"\"\n",
|
84 |
-
"## Description\n",
|
85 |
-
"The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected\n",
|
86 |
-
"features to be the same across tasks. This example simulates sequential measurements, each task \n",
|
87 |
-
"is a time instant, and the relevant features vary in amplitude over time while being the same. \n",
|
88 |
-
"The multi-task lasso imposes that features that are selected at one time point are select \n",
|
89 |
-
"for all time point. This makes feature selection by the Lasso more stable.\n",
|
90 |
-
"## Model\n",
|
91 |
-
"currentmodule: sklearn.linear_model\n",
|
92 |
-
"class:`Lasso` and class: `MultiTaskLasso` are used in this example.\n",
|
93 |
-
"Plots represent Lasso, MultiTaskLasso and Ground truth time series\n",
|
94 |
-
"\"\"\"\n",
|
95 |
-
"\n",
|
96 |
-
"with gr.Blocks() as demo:\n",
|
97 |
-
" gr.Markdown('''\n",
|
98 |
-
" <div>\n",
|
99 |
-
" <h1 style='text-align: center'> Joint feature selection with multi-task Lasso </h1>\n",
|
100 |
-
" </div>\n",
|
101 |
-
" ''')\n",
|
102 |
-
" gr.Markdown(model_card)\n",
|
103 |
-
" gr.Markdown(\"Original example Author: Alexandre Gramfort <[email protected]>\")\n",
|
104 |
-
" gr.Markdown(\n",
|
105 |
-
" \"Iterative conversion by: <a href=\\\"https://github.com/DeaMariaLeon\\\">Dea María Léon</a>\"\n",
|
106 |
-
" )\n",
|
107 |
-
" n_samples = gr.Slider(50,500,value=100,step=50,label='Select number of samples')\n",
|
108 |
-
" n_features = gr.Slider(5,50,value=30,step=5,label='Select number of features')\n",
|
109 |
-
" n_tasks = gr.Slider(5,50,value=40,step=5,label='Select number of tasks')\n",
|
110 |
-
" n_relevant_features = gr.Slider(1,10,value=5,step=1,label='Select number of relevant_features')\n",
|
111 |
-
" with gr.Column():\n",
|
112 |
-
" with gr.Tab('Select Alpha Range'):\n",
|
113 |
-
" alpha = gr.Slider(0,10,value=1.0,step=0.5,label='alpha')\n",
|
114 |
-
" \n",
|
115 |
-
" btn = gr.Button(value = 'Submit')\n",
|
116 |
-
"\n",
|
117 |
-
" btn.click(make_plot,inputs=[n_samples,n_features, n_tasks, n_relevant_features, alpha],outputs=[gr.Plot()])\n",
|
118 |
-
"\n",
|
119 |
-
"demo.launch()"
|
120 |
-
]
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"cell_type": "code",
|
124 |
-
"execution_count": null,
|
125 |
-
"id": "c8043d31",
|
126 |
-
"metadata": {},
|
127 |
-
"outputs": [],
|
128 |
-
"source": []
|
129 |
-
}
|
130 |
-
],
|
131 |
-
"metadata": {
|
132 |
-
"kernelspec": {
|
133 |
-
"display_name": "scikit-ex",
|
134 |
-
"language": "python",
|
135 |
-
"name": "scikit-ex"
|
136 |
-
},
|
137 |
-
"language_info": {
|
138 |
-
"codemirror_mode": {
|
139 |
-
"name": "ipython",
|
140 |
-
"version": 3
|
141 |
-
},
|
142 |
-
"file_extension": ".py",
|
143 |
-
"mimetype": "text/x-python",
|
144 |
-
"name": "python",
|
145 |
-
"nbconvert_exporter": "python",
|
146 |
-
"pygments_lexer": "ipython3",
|
147 |
-
"version": "3.11.2"
|
148 |
-
}
|
149 |
-
},
|
150 |
-
"nbformat": 4,
|
151 |
-
"nbformat_minor": 5
|
152 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|