Dea22 commited on
Commit
44808fd
·
1 Parent(s): dd5de47

Delete Final.ipynb

Browse files
Files changed (1) hide show
  1. Final.ipynb +0 -152
Final.ipynb DELETED
@@ -1,152 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "id": "896cacc6",
7
- "metadata": {},
8
- "outputs": [
9
- {
10
- "name": "stdout",
11
- "output_type": "stream",
12
- "text": [
13
- "Running on local URL: http://127.0.0.1:7860\n",
14
- "\n",
15
- "To create a public link, set `share=True` in `launch()`.\n"
16
- ]
17
- },
18
- {
19
- "data": {
20
- "text/html": [
21
- "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
22
- ],
23
- "text/plain": [
24
- "<IPython.core.display.HTML object>"
25
- ]
26
- },
27
- "metadata": {},
28
- "output_type": "display_data"
29
- },
30
- {
31
- "data": {
32
- "text/plain": []
33
- },
34
- "execution_count": 1,
35
- "metadata": {},
36
- "output_type": "execute_result"
37
- }
38
- ],
39
- "source": [
40
- "import numpy as np\n",
41
- "import matplotlib.pyplot as plt\n",
42
- "from sklearn.linear_model import MultiTaskLasso, Lasso\n",
43
- "import gradio as gr\n",
44
- "\n",
45
- "rng = np.random.RandomState(42)\n",
46
- "\n",
47
- "# Generate some 2D coefficients with sine waves with random frequency and phase\n",
48
- "def make_plot(n_samples, n_features, n_tasks, n_relevant_features, alpha):\n",
49
- " \n",
50
- " coef = np.zeros((n_tasks, n_features))\n",
51
- " times = np.linspace(0, 2 * np.pi, n_tasks)\n",
52
- " for k in range(n_relevant_features):\n",
53
- " coef[:, k] = np.sin((1.0 + rng.randn(1)) * times + 3 * rng.randn(1))\n",
54
- " \n",
55
- " X = rng.randn(n_samples, n_features)\n",
56
- " Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)\n",
57
- " \n",
58
- " coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])\n",
59
- " coef_multi_task_lasso_ = MultiTaskLasso(alpha=alpha).fit(X, Y).coef_\n",
60
- " \n",
61
- " fig = plt.figure(figsize=(8, 5))\n",
62
- " \n",
63
- " feature_to_plot = 0\n",
64
- " fig = plt.figure()\n",
65
- " lw = 2\n",
66
- " plt.plot(coef[:, feature_to_plot], color=\"seagreen\", linewidth=lw, label=\"Ground truth\")\n",
67
- " plt.plot(\n",
68
- " coef_lasso_[:, feature_to_plot], color=\"cornflowerblue\", linewidth=lw, label=\"Lasso\"\n",
69
- " )\n",
70
- " plt.plot(\n",
71
- " coef_multi_task_lasso_[:, feature_to_plot],\n",
72
- " color=\"gold\",\n",
73
- " linewidth=lw,\n",
74
- " label=\"MultiTaskLasso\",\n",
75
- " )\n",
76
- " plt.legend(loc=\"upper center\")\n",
77
- " plt.axis(\"tight\")\n",
78
- " plt.ylim([-1.1, 1.1])\n",
79
- " fig.suptitle(\"Lasso, MultiTaskLasso and Ground truth time series\")\n",
80
- " return fig\n",
81
- " \n",
82
- " \n",
83
- "model_card=f\"\"\"\n",
84
- "## Description\n",
85
- "The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected\n",
86
- "features to be the same across tasks. This example simulates sequential measurements, each task \n",
87
- "is a time instant, and the relevant features vary in amplitude over time while being the same. \n",
88
- "The multi-task lasso imposes that features that are selected at one time point are select \n",
89
- "for all time point. This makes feature selection by the Lasso more stable.\n",
90
- "## Model\n",
91
- "currentmodule: sklearn.linear_model\n",
92
- "class:`Lasso` and class: `MultiTaskLasso` are used in this example.\n",
93
- "Plots represent Lasso, MultiTaskLasso and Ground truth time series\n",
94
- "\"\"\"\n",
95
- "\n",
96
- "with gr.Blocks() as demo:\n",
97
- " gr.Markdown('''\n",
98
- " <div>\n",
99
- " <h1 style='text-align: center'> Joint feature selection with multi-task Lasso </h1>\n",
100
- " </div>\n",
101
- " ''')\n",
102
- " gr.Markdown(model_card)\n",
103
- " gr.Markdown(\"Original example Author: Alexandre Gramfort <[email protected]>\")\n",
104
- " gr.Markdown(\n",
105
- " \"Iterative conversion by: <a href=\\\"https://github.com/DeaMariaLeon\\\">Dea María Léon</a>\"\n",
106
- " )\n",
107
- " n_samples = gr.Slider(50,500,value=100,step=50,label='Select number of samples')\n",
108
- " n_features = gr.Slider(5,50,value=30,step=5,label='Select number of features')\n",
109
- " n_tasks = gr.Slider(5,50,value=40,step=5,label='Select number of tasks')\n",
110
- " n_relevant_features = gr.Slider(1,10,value=5,step=1,label='Select number of relevant_features')\n",
111
- " with gr.Column():\n",
112
- " with gr.Tab('Select Alpha Range'):\n",
113
- " alpha = gr.Slider(0,10,value=1.0,step=0.5,label='alpha')\n",
114
- " \n",
115
- " btn = gr.Button(value = 'Submit')\n",
116
- "\n",
117
- " btn.click(make_plot,inputs=[n_samples,n_features, n_tasks, n_relevant_features, alpha],outputs=[gr.Plot()])\n",
118
- "\n",
119
- "demo.launch()"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": null,
125
- "id": "c8043d31",
126
- "metadata": {},
127
- "outputs": [],
128
- "source": []
129
- }
130
- ],
131
- "metadata": {
132
- "kernelspec": {
133
- "display_name": "scikit-ex",
134
- "language": "python",
135
- "name": "scikit-ex"
136
- },
137
- "language_info": {
138
- "codemirror_mode": {
139
- "name": "ipython",
140
- "version": 3
141
- },
142
- "file_extension": ".py",
143
- "mimetype": "text/x-python",
144
- "name": "python",
145
- "nbconvert_exporter": "python",
146
- "pygments_lexer": "ipython3",
147
- "version": "3.11.2"
148
- }
149
- },
150
- "nbformat": 4,
151
- "nbformat_minor": 5
152
- }