Dea22 commited on
Commit
fb288f1
·
1 Parent(s): 926e249

update all

Browse files
Files changed (1) hide show
  1. app.py +36 -26
app.py CHANGED
@@ -2,25 +2,31 @@ import numpy as np
2
  import matplotlib.pyplot as plt
3
  from sklearn.linear_model import MultiTaskLasso, Lasso
4
  import gradio as gr
 
5
 
6
  rng = np.random.RandomState(42)
7
 
8
  # Generate some 2D coefficients with sine waves with random frequency and phase
9
- def make_plot(n_samples, n_features, n_tasks, n_relevant_features, alpha):
 
 
 
 
 
10
 
11
  coef = np.zeros((n_tasks, n_features))
12
  times = np.linspace(0, 2 * np.pi, n_tasks)
13
  for k in range(n_relevant_features):
14
  coef[:, k] = np.sin((1.0 + rng.randn(1)) * times + 3 * rng.randn(1))
15
-
16
  X = rng.randn(n_samples, n_features)
17
  Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)
18
-
19
  coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])
20
  coef_multi_task_lasso_ = MultiTaskLasso(alpha=alpha).fit(X, Y).coef_
21
-
22
  fig = plt.figure(figsize=(8, 5))
23
-
24
  feature_to_plot = 0
25
  fig = plt.figure()
26
  lw = 2
@@ -34,27 +40,31 @@ def make_plot(n_samples, n_features, n_tasks, n_relevant_features, alpha):
34
  linewidth=lw,
35
  label="MultiTaskLasso",
36
  )
37
- plt.legend(loc="upper center")
 
 
38
  plt.axis("tight")
39
  plt.ylim([-1.1, 1.1])
40
  fig.suptitle("Lasso, MultiTaskLasso and Ground truth time series")
41
  return fig
42
-
43
-
44
- model_card=f"""
45
  ## Description
46
- The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected
47
- features to be the same across tasks. This example simulates sequential measurements, each task
48
- is a time instant, and the relevant features vary in amplitude over time while being the same.
49
- The multi-task lasso imposes that features that are selected at one time point are select
50
- for all time point. This makes feature selection by the Lasso more stable.
51
  ## Model
52
  currentmodule: sklearn.linear_model
53
  class:`Lasso` and class: `MultiTaskLasso` are used in this example.
54
  Plots represent Lasso, MultiTaskLasso and Ground truth time series
55
  """
56
 
57
- with gr.Blocks() as demo:
 
 
 
 
58
  gr.Markdown('''
59
  <div>
60
  <h1 style='text-align: center'> Joint feature selection with multi-task Lasso </h1>
@@ -63,19 +73,19 @@ with gr.Blocks() as demo:
63
  gr.Markdown(model_card)
64
  gr.Markdown("Original example Author: Alexandre Gramfort <[email protected]>")
65
  gr.Markdown(
66
- "Iterative conversion by: <a href=\"https://github.com/DeaMariaLeon\">Dea María Léon</a>"
67
  )
68
- with gr.Row():
69
- n_samples = gr.Slider(50,500,value=100,step=50,label='Select number of samples')
70
- n_features = gr.Slider(5,50,value=30,step=5,label='Select number of features')
71
- n_tasks = gr.Slider(5,50,value=40,step=5,label='Select number of tasks')
72
- n_relevant_features = gr.Slider(1,10,value=5,step=1,label='Select number of relevant_features')
73
- with gr.Column():
74
- with gr.Tab('Select Alpha Range'):
75
- alpha = gr.Slider(0,10,value=1.0,step=0.5,label='alpha')
76
-
77
  btn = gr.Button(value = 'Submit')
78
 
79
  btn.click(make_plot,inputs=[n_samples,n_features, n_tasks, n_relevant_features, alpha],outputs=[gr.Plot()])
80
 
81
- demo.launch()
 
2
  import matplotlib.pyplot as plt
3
  from sklearn.linear_model import MultiTaskLasso, Lasso
4
  import gradio as gr
5
+ import time
6
 
7
  rng = np.random.RandomState(42)
8
 
9
  # Generate some 2D coefficients with sine waves with random frequency and phase
10
+ def make_plot(n_samples, n_features, n_tasks, n_relevant_features, alpha, progress=gr.Progress()):
11
+
12
+ progress(0, desc="Starting...")
13
+ time.sleep(1)
14
+ for i in progress.tqdm(range(100)):
15
+ time.sleep(0.1)
16
 
17
  coef = np.zeros((n_tasks, n_features))
18
  times = np.linspace(0, 2 * np.pi, n_tasks)
19
  for k in range(n_relevant_features):
20
  coef[:, k] = np.sin((1.0 + rng.randn(1)) * times + 3 * rng.randn(1))
21
+
22
  X = rng.randn(n_samples, n_features)
23
  Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)
24
+
25
  coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])
26
  coef_multi_task_lasso_ = MultiTaskLasso(alpha=alpha).fit(X, Y).coef_
27
+
28
  fig = plt.figure(figsize=(8, 5))
29
+
30
  feature_to_plot = 0
31
  fig = plt.figure()
32
  lw = 2
 
40
  linewidth=lw,
41
  label="MultiTaskLasso",
42
  )
43
+ #plt.legend(loc="upper center")
44
+ plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),
45
+ ncol=3, fancybox=True, shadow=True)
46
  plt.axis("tight")
47
  plt.ylim([-1.1, 1.1])
48
  fig.suptitle("Lasso, MultiTaskLasso and Ground truth time series")
49
  return fig
50
+
51
+
52
+ model_card = f"""
53
  ## Description
54
+ Multi-task Lasso allows us to jointly fit multiple regression problems by enforcing the selected features to be the same across tasks. This example simulates sequential measurement. Each task
55
+ is a time instant, and the relevant features, while being the same, vary in amplitude over time. Multi-task lasso imposes that features that are selected at one time point are selected
56
+ for all time points. This makes feature selection more stable than by regular Lasso.
 
 
57
  ## Model
58
  currentmodule: sklearn.linear_model
59
  class:`Lasso` and class: `MultiTaskLasso` are used in this example.
60
  Plots represent Lasso, MultiTaskLasso and Ground truth time series
61
  """
62
 
63
+ with gr.Blocks(theme=gr.themes.Glass(primary_hue=gr.themes.colors.gray,
64
+ secondary_hue=gr.themes.colors.sky,
65
+ text_size=gr.themes.sizes.text_lg),
66
+ css=".gradio-container {background-color: zinc }") as demo:
67
+
68
  gr.Markdown('''
69
  <div>
70
  <h1 style='text-align: center'> Joint feature selection with multi-task Lasso </h1>
 
73
  gr.Markdown(model_card)
74
  gr.Markdown("Original example Author: Alexandre Gramfort <[email protected]>")
75
  gr.Markdown(
76
+ "Iterative conversion by: <a href=\"https://www.deamarialeon.com\">Dea María Léon</a>"
77
  )
78
+ gr.Markdown("### Please select values and click submit:")
79
+
80
+ with gr.Row().style(equal_height=True):
81
+ n_samples = gr.Slider(50,500,value=100,step=50,label='Number of samples')
82
+ n_features = gr.Slider(5,50,value=30,step=5,label='Features')
83
+ n_tasks = gr.Slider(5,50,value=40,step=5,label='Tasks')
84
+ n_relevant_features = gr.Slider(1,10,value=5,step=1,label='Relevant features')
85
+ alpha = gr.Slider(0,10,value=1.0,step=0.5,label='Alpha Range')
86
+
87
  btn = gr.Button(value = 'Submit')
88
 
89
  btn.click(make_plot,inputs=[n_samples,n_features, n_tasks, n_relevant_features, alpha],outputs=[gr.Plot()])
90
 
91
+ demo.queue().launch()