File size: 4,343 Bytes
23c3d80
 
 
6a9c346
 
4f62d1a
 
 
0c2ef4d
4f62d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2ef4d
 
23c3d80
754b60e
6a9c346
4f62d1a
23c3d80
 
 
4f62d1a
 
 
 
ec39d6f
4f62d1a
 
 
 
 
 
 
 
 
7f15638
4f62d1a
 
 
 
6a9c346
4f62d1a
6a9c346
4f62d1a
 
 
 
 
 
 
 
 
 
 
23c3d80
4f62d1a
e794576
23c3d80
 
 
 
 
4f62d1a
 
 
 
23c3d80
6a9c346
0c2ef4d
23c3d80
4f62d1a
 
9f0f9a3
23c3d80
0c2ef4d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
from PIL import Image
from einops import rearrange
import requests
import spaces
from huggingface_hub import login
from gradio_imageslider import ImageSlider  # Import ImageSlider


from image_datasets.canny_dataset import canny_processor, c_crop
from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors

# Download and load the ControlNet model
model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny-v3/resolve/main/flux-canny-controlnet-v3.safetensors?download=true"
model_path = "./flux-canny-controlnet-v3.safetensors"
if not os.path.exists(model_path):
    response = requests.get(model_url)
    with open(model_path, 'wb') as f:
        f.write(response.content)

# Source: https://github.com/XLabs-AI/x-flux.git
name = "flux-dev"
device = torch.device("cuda")
offload = False
is_schnell = name == "flux-schnell"

model, ae, t5, clip, controlnet = None, None, None, None, None

def load_models():
    global model, ae, t5, clip, controlnet
    t5 = load_t5(device, max_length=256 if is_schnell else 512)
    clip = load_clip(device)
    model = load_flow_model(name, device=device)
    ae = load_ae(name, device=device)
    controlnet = load_controlnet(name, device).to(device).to(torch.bfloat16)

    checkpoint = load_safetensors(model_path)
    controlnet.load_state_dict(checkpoint, strict=False)

load_models()

def preprocess_image(image, target_width, target_height, crop=True):
    if crop:
        image = c_crop(image)  # Crop the image to square
        original_width, original_height = image.size

        # Resize to match the target size without stretching

def preprocess_canny_image(image, target_width, target_height, crop=True):
    image = preprocess_image(image, target_width, target_height, crop=crop)
    image = canny_processor(image)


    return image

@spaces.GPU(duration=120)
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False):
    if random_seed:
        seed = np.random.randint(0, 10000)
    
    if not os.path.isdir("./controlnet_results/"):
        os.makedirs("./controlnet_results/")

    torch_device = torch.device("cuda")
    
    model.to(torch_device)
    t5.to(torch_device)
    clip.to(torch_device)
    ae.to(torch_device)
    controlnet.to(torch_device)

    width = 16 * width // 16
    height = 16 * height // 16
    timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=(not is_schnell))
    
    processed_input = preprocess_image(control_image, width, height)
    canny_processed = preprocess_canny_image(control_image, width, height)
    controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
    controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)

    torch.manual_seed(seed)
    with torch.no_grad():
        x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
        inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)

        x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond)
        
        x = unpack(x.float(), height, width)
        x = ae.decode(x)

    x1 = x.clamp(-1, 1)
    x1 = rearrange(x1[-1], "c h w -> h w c")
    output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
    
    return [processed_input, output_img]  # Return both images for slider

interface = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Textbox(label="Prompt"),
        gr.Image(type="pil", label="Control Image"),
        gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
        gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
        gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
        gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
        gr.Number(value=42, label="Seed"),
        gr.Checkbox(label="Random Seed")

    ],
    outputs=ImageSlider(label="Before / After"),  # Use ImageSlider as the output
    title="FLUX.1 Controlnet Canny",

if __name__ == "__main__":
    interface.launch()