File size: 6,808 Bytes
3a1e48f
8340be4
a0dd587
0339fc3
1d1a1a5
 
68b51dd
8ddce9c
0e80ee6
399fa48
41238f8
8340be4
1d1a1a5
3a1e48f
0e80ee6
 
 
a0dd587
1d1a1a5
 
 
 
3a1e48f
a0dd587
3a1e48f
 
 
 
 
 
 
 
 
 
9366b85
a0dd587
9366b85
 
1d1a1a5
 
 
9366b85
18054eb
1d1a1a5
 
 
3a1e48f
0e80ee6
3a1e48f
481f4d5
 
a0dd587
bb75d67
 
debbd96
0272460
41238f8
0e80ee6
41238f8
 
 
 
 
1287e5e
53d067c
0e80ee6
a0dd587
41238f8
a0dd587
0272460
a0dd587
0e80ee6
1287e5e
0e80ee6
a0dd587
 
0e80ee6
 
1287e5e
0e80ee6
a0dd587
 
0e80ee6
872fe49
a550ff1
0272460
 
 
 
 
 
 
 
 
 
 
 
21f9f22
a0dd587
c58d653
21f9f22
0272460
26336a6
 
0272460
 
 
a0dd587
 
 
0272460
 
 
a0dd587
 
 
0272460
 
 
 
29b3293
0272460
 
a0dd587
0272460
 
a0dd587
 
 
 
 
 
 
 
 
de79a87
a0dd587
3a1e48f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from transformers import AutoFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2

base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")

safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)

device = "cuda"

noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae,
    feature_extractor=safety_feature_extractor,
    safety_checker=None  # <--- Disable safety checker
).to(device)

#pipe.load_lora_weights("h94/IP-Adapter-FaceID", weight_name="ip-adapter-faceid-plusv2_sd15_lora.safetensors")
#pipe.fuse_lora()

ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)

app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

cv2.setNumThreads(1)

@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, progress=gr.Progress(track_tqdm=True)):
    faceid_all_embeds = []
    first_iteration = True
    for image in images:
        face = cv2.imread(image)
        faces = app.get(face)
        faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        faceid_all_embeds.append(faceid_embed)
        if(first_iteration and preserve_face_structure):
            face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face
            first_iteration = False
            
    average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
    
    total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}"
    
    if(not preserve_face_structure):
        print("Generating normal")
        image = ip_model.generate(
            prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
            scale=likeness_strength, width=512, height=512, num_inference_steps=30
        )
    else:
        print("Generating plus")
        image = ip_model_plus.generate(
            prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
            scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=512, height=512, num_inference_steps=30
        )
    print(image)
    return image

def change_style(style):
    if style == "Photorealistic":
        return(gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0))
    else:
        return(gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8))

def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
footer{display:none !important}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("")
    gr.Markdown("")
    with gr.Row():
        with gr.Column():
            files = gr.Files(
                        label="Drag 1 or more photos of your face",
                        file_types=["image"]
                    )
            uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
            with gr.Column(visible=False) as clear_button:
                remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
            prompt = gr.Textbox(label="Prompt",
                       info="Try something like 'a photo of a man/woman/person'",
                       placeholder="A photo of a [man/woman/person]...")
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
            style = gr.Radio(label="Generation type", info="For stylized try prompts like 'a watercolor painting of a woman'", choices=["Photorealistic", "Stylized"], value="Photorealistic")
            submit = gr.Button("Submit")
            with gr.Accordion(open=False, label="Advanced Options"):
                preserve = gr.Checkbox(label="Preserve Face Structure", info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.", value=True)
                face_strength = gr.Slider(label="Face Structure strength", info="Only applied if preserve face structure is checked", value=1.3, step=0.1, minimum=0, maximum=3)
                likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5)
                nfaa_negative_prompts = gr.Textbox(label="Appended Negative Prompts", info="Negative prompts to steer generations towards safe for all audiences outputs", value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through")    
        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")
        style.change(fn=change_style,
                    inputs=style,
                    outputs=[preserve, face_strength, likeness_strength])
        files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
        submit.click(fn=generate_image,
                    inputs=[files,prompt,negative_prompt,preserve, face_strength, likeness_strength, nfaa_negative_prompts],
                    outputs=gallery)
    
    gr.Markdown("")
    
demo.launch()