import torch import spaces from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL from transformers import AutoFeatureExtractor from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from insightface.utils import face_align import gradio as gr import cv2 base_model_path = "SG161222/Realistic_Vision_V6.0_B1_noVAE" vae_model_path = "stabilityai/sd-vae-ft-mse" image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") device = "cuda" noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained( base_model_path, torch_dtype=torch.float16, scheduler=noise_scheduler, vae=vae ).to(device) # Instantiate IPAdapter models ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device) # Initialize the FaceAnalysis application app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) cv2.setNumThreads(1) @spaces.GPU(enable_queue=True) def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, progress=gr.Progress(track_tqdm=True)): faceid_all_embeds = [] first_iteration = True for image in images: face = cv2.imread(image) faces = app.get(face) faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) faceid_all_embeds.append(faceid_embed) if(first_iteration and preserve_face_structure): face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face first_iteration = False average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}" if(not preserve_face_structure): print("Generating normal") image = ip_model.generate( prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding, scale=likeness_strength, width=512, height=512, num_inference_steps=30 ) else: print("Generating plus") image = ip_model_plus.generate( prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding, scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=512, height=512, num_inference_steps=30 ) print(image) return image def change_style(style): if style == "Photorealistic": return(gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0)) else: return(gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8)) def swap_to_gallery(images): return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) def remove_back_to_files(): return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) css = ''' h1{margin-bottom: 0 !important} ''' with gr.Blocks(css=css) as demo: gr.Markdown("# IP-Adapter-FaceID Plus demo") gr.Markdown("Demo for the [h94/IP-Adapter-FaceID model](https://huggingface.co/h94/IP-Adapter-FaceID) - Generate AI images with your own face - Non-commercial license") with gr.Row(): with gr.Column(): files = gr.Files( label="Drag 1 or more photos of your face", file_types=["image"] ) uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125) with gr.Column(visible=False) as clear_button: remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm") prompt = gr.Textbox(label="Prompt", info="Try something like 'a photo of a man/woman/person'", placeholder="A photo of a [man/woman/person]...") negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality") style = gr.Radio(label="Generation type", info="For stylized try prompts like 'a watercolor painting of a woman'", choices=["Photorealistic", "Stylized"], value="Photorealistic") submit = gr.Button("Submit") with gr.Accordion(open=False, label="Advanced Options"): preserve = gr.Checkbox(label="Preserve Face Structure", info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.", value=True) face_strength = gr.Slider(label="Face Structure strength", info="Only applied if preserve face structure is checked", value=1.3, step=0.1, minimum=0, maximum=3) likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5) nfaa_negative_prompts = gr.Textbox(label="Appended Negative Prompts", info="Negative prompts to steer generations towards safe for all audiences outputs", value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through") with gr.Column(): gallery = gr.Gallery(label="Generated Images") style.change(fn=change_style, inputs=style, outputs=[preserve, face_strength, likeness_strength]) files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files]) remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files]) submit.click(fn=generate_image, inputs=[files,prompt,negative_prompt,preserve, face_strength, likeness_strength, nfaa_negative_prompts], outputs=gallery) gr.Markdown("This demo includes extra features to mitigate the implicit bias of the model and prevent explicit usage of it to generate content with faces of people, including third parties, that is not safe for all audiences, including naked or semi-naked people.") demo.launch()