research-tool / app.py
Deaksh's picture
Update app.py
cf2e27f verified
import os
import streamlit as st
import pickle
import time
import requests
from bs4 import BeautifulSoup
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain_groq import ChatGroq
from langchain.schema import Document
import os
st.title("RockyBot: News Research Tool πŸ“ˆ")
st.sidebar.title("News Article URLs")
# Collect URLs from user input
urls = [st.sidebar.text_input(f"URL {i+1}") for i in range(3)]
process_url_clicked = st.sidebar.button("Process URLs")
file_path = "faiss_store_openai.pkl"
main_placeholder = st.empty()
llm = ChatGroq(
api_key=os.environ["GROQ_API_KEY"], # This will raise an error if unset
model_name="llama3-70b-8192"
)
def fetch_web_content(url):
"""Fetches text content from a given URL using BeautifulSoup."""
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
return soup.get_text()
except Exception as e:
return f"Error fetching {url}: {str(e)}"
if process_url_clicked:
main_placeholder.text("Data Loading...Started...βœ…βœ…βœ…")
# Fetch content from URLs
data = [(url, fetch_web_content(url)) for url in urls if url.strip()]
main_placeholder.text("Data Loading...Completed...βœ…βœ…βœ…")
# Split data into chunks
text_splitter = RecursiveCharacterTextSplitter(
separators=['\n\n', '\n', '.', ','],
chunk_size=1000
)
main_placeholder.text("Text Splitting...Started...βœ…βœ…βœ…")
docs = []
for url, text in data:
split_docs = text_splitter.split_text(text)
docs.extend([Document(page_content=chunk, metadata={"source": url}) for chunk in split_docs])
main_placeholder.text("Text Splitting...Completed...βœ…βœ…βœ…")
# Create embeddings and save to FAISS vector store
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectorstore_huggingface = FAISS.from_documents(docs, embedding_model)
main_placeholder.text("Embedding Vector Started Building...βœ…βœ…βœ…")
time.sleep(2)
# Save the vector store to a pickle file
with open(file_path, "wb") as f:
pickle.dump(vectorstore_huggingface, f)
# User query input
query = st.text_input("Question: ")
if query:
if os.path.exists(file_path):
with open(file_path, "rb") as f:
vectorstore = pickle.load(f)
retriever = vectorstore.as_retriever()
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=retriever)
result = chain({"question": query}, return_only_outputs=True)
# Display answer
st.header("Answer")
st.write(result["answer"])
# Display sources, if available
sources = result.get("sources", "").strip()
if sources:
st.subheader("Sources:")
sources_list = sources.split("\n")
for source in sources_list:
st.write(source)
else:
st.write("No sources found.")