Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
-
import requests
|
2 |
import os
|
3 |
import streamlit as st
|
4 |
import pickle
|
5 |
import time
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
7 |
from langchain.chains import RetrievalQAWithSourcesChain
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain.document_loaders import UnstructuredURLLoader
|
10 |
from langchain_groq import ChatGroq
|
|
|
11 |
from langchain.vectorstores import FAISS
|
12 |
|
13 |
from dotenv import load_dotenv
|
@@ -27,100 +28,36 @@ file_path = "faiss_store_openai.pkl"
|
|
27 |
main_placeholder = st.empty()
|
28 |
llm = ChatGroq(model_name="llama-3.3-70b-versatile", temperature=0.9, max_tokens=500)
|
29 |
|
30 |
-
# Debugging: Check if URLs are accessible
|
31 |
-
def check_url(url):
|
32 |
-
try:
|
33 |
-
response = requests.get(url)
|
34 |
-
if response.status_code == 200:
|
35 |
-
return True
|
36 |
-
else:
|
37 |
-
return False
|
38 |
-
except Exception as e:
|
39 |
-
return False
|
40 |
-
|
41 |
if process_url_clicked:
|
42 |
-
#
|
43 |
-
|
44 |
-
for url in urls:
|
45 |
-
if check_url(url):
|
46 |
-
valid_urls.append(url)
|
47 |
-
else:
|
48 |
-
main_placeholder.text(f"URL is not accessible: {url}")
|
49 |
-
|
50 |
-
if not valid_urls:
|
51 |
-
main_placeholder.text("None of the URLs are accessible.")
|
52 |
-
|
53 |
-
# Load data from URLs
|
54 |
-
loader = UnstructuredURLLoader(urls=valid_urls)
|
55 |
main_placeholder.text("Data Loading...Started...β
β
β
")
|
56 |
-
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
main_placeholder.text(f"Error loading data: {e}")
|
60 |
-
|
61 |
-
# Split data into chunks
|
62 |
text_splitter = RecursiveCharacterTextSplitter(
|
63 |
separators=['\n\n', '\n', '.', ','],
|
64 |
chunk_size=1000
|
65 |
)
|
66 |
main_placeholder.text("Text Splitter...Started...β
β
β
")
|
67 |
docs = text_splitter.split_documents(data)
|
68 |
-
|
69 |
-
# Debugging: Check if docs is empty
|
70 |
-
if not docs:
|
71 |
-
main_placeholder.text("No valid documents found! Please check the URLs.")
|
72 |
-
|
73 |
-
# Debugging: Check the content of docs
|
74 |
-
for doc in docs:
|
75 |
-
main_placeholder.text(f"Document content: {doc.page_content[:200]}") # Show first 200 chars of each document
|
76 |
-
|
77 |
-
# Create embeddings using HuggingFaceEmbeddings
|
78 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
79 |
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
80 |
-
|
81 |
-
# Generate embeddings
|
82 |
-
embeddings = embedding_model.embed_documents([doc.page_content for doc in docs])
|
83 |
-
|
84 |
-
# Debugging: Check if embeddings are generated
|
85 |
-
if not embeddings:
|
86 |
-
main_placeholder.text("No embeddings were generated! Check the embedding model or document content.")
|
87 |
-
|
88 |
-
# Check the size of embeddings
|
89 |
-
main_placeholder.text(f"Generated {len(embeddings)} embeddings.")
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
-
# Check the shape of embeddings
|
95 |
-
main_placeholder.text(f"Shape of embeddings: {embeddings_np.shape}")
|
96 |
-
|
97 |
-
# Create FAISS index
|
98 |
-
if len(embeddings) > 0:
|
99 |
-
dimension = len(embeddings[0]) # Embedding vector dimension
|
100 |
-
index = FAISS(dimension)
|
101 |
-
index.add(embeddings_np) # Add embeddings to FAISS index
|
102 |
-
|
103 |
-
# Wrap FAISS index using LangChain FAISS wrapper
|
104 |
-
vectorstore_huggingface = FAISS(embedding_function=embedding_model, index=index)
|
105 |
-
|
106 |
-
# Save the FAISS index to a pickle file
|
107 |
-
with open(file_path, "wb") as f:
|
108 |
-
pickle.dump(vectorstore_huggingface, f)
|
109 |
-
|
110 |
-
time.sleep(2)
|
111 |
-
else:
|
112 |
-
main_placeholder.text("Embeddings could not be generated, skipping FAISS index creation.")
|
113 |
|
114 |
query = main_placeholder.text_input("Question: ")
|
115 |
if query:
|
116 |
if os.path.exists(file_path):
|
117 |
-
# Load the FAISS index from the pickle file
|
118 |
with open(file_path, "rb") as f:
|
119 |
vectorstore = pickle.load(f)
|
120 |
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
|
121 |
result = chain({"question": query}, return_only_outputs=True)
|
122 |
-
|
123 |
-
# Display the answer
|
124 |
st.header("Answer")
|
125 |
st.write(result["answer"])
|
126 |
|
@@ -136,3 +73,4 @@ if query:
|
|
136 |
|
137 |
|
138 |
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import pickle
|
4 |
import time
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain import OpenAI
|
7 |
from langchain.chains import RetrievalQAWithSourcesChain
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain.document_loaders import UnstructuredURLLoader
|
10 |
from langchain_groq import ChatGroq
|
11 |
+
from langchain.embeddings import OpenAIEmbeddings
|
12 |
from langchain.vectorstores import FAISS
|
13 |
|
14 |
from dotenv import load_dotenv
|
|
|
28 |
main_placeholder = st.empty()
|
29 |
llm = ChatGroq(model_name="llama-3.3-70b-versatile", temperature=0.9, max_tokens=500)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if process_url_clicked:
|
32 |
+
# load data
|
33 |
+
loader = UnstructuredURLLoader(urls=urls)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
main_placeholder.text("Data Loading...Started...β
β
β
")
|
35 |
+
data = loader.load()
|
36 |
+
# split data
|
|
|
|
|
|
|
|
|
37 |
text_splitter = RecursiveCharacterTextSplitter(
|
38 |
separators=['\n\n', '\n', '.', ','],
|
39 |
chunk_size=1000
|
40 |
)
|
41 |
main_placeholder.text("Text Splitter...Started...β
β
β
")
|
42 |
docs = text_splitter.split_documents(data)
|
43 |
+
# create embeddings and save it to FAISS index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
45 |
+
vectorstore_huggingface = FAISS.from_documents(docs, embedding_model)
|
46 |
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
47 |
+
time.sleep(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Save the FAISS index to a pickle file
|
50 |
+
with open(file_path, "wb") as f:
|
51 |
+
pickle.dump(vectorstore_huggingface, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
query = main_placeholder.text_input("Question: ")
|
54 |
if query:
|
55 |
if os.path.exists(file_path):
|
|
|
56 |
with open(file_path, "rb") as f:
|
57 |
vectorstore = pickle.load(f)
|
58 |
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
|
59 |
result = chain({"question": query}, return_only_outputs=True)
|
60 |
+
# result will be a dictionary of this format --> {"answer": "", "sources": [] }
|
|
|
61 |
st.header("Answer")
|
62 |
st.write(result["answer"])
|
63 |
|
|
|
73 |
|
74 |
|
75 |
|
76 |
+
|