Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,95 +2,82 @@ import os
|
|
2 |
import streamlit as st
|
3 |
import pickle
|
4 |
import time
|
|
|
|
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
-
from langchain import OpenAI
|
7 |
from langchain.chains import RetrievalQAWithSourcesChain
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
-
from langchain.document_loaders import UnstructuredURLLoader
|
10 |
-
from langchain_groq import ChatGroq
|
11 |
-
from langchain.embeddings import OpenAIEmbeddings
|
12 |
-
from langchain.vectorstores import FAISS
|
13 |
from langchain.vectorstores import Chroma
|
14 |
-
import
|
15 |
-
from bs4 import BeautifulSoup
|
16 |
-
|
17 |
-
|
18 |
from dotenv import load_dotenv
|
19 |
-
|
|
|
20 |
|
21 |
st.title("RockyBot: News Research Tool π")
|
22 |
st.sidebar.title("News Article URLs")
|
23 |
|
24 |
-
|
25 |
-
for i in range(3)
|
26 |
-
url = st.sidebar.text_input(f"URL {i+1}")
|
27 |
-
urls.append(url)
|
28 |
-
|
29 |
process_url_clicked = st.sidebar.button("Process URLs")
|
30 |
file_path = "faiss_store_openai.pkl"
|
31 |
|
32 |
main_placeholder = st.empty()
|
33 |
llm = ChatGroq(model_name="llama-3.3-70b-versatile", temperature=0.9, max_tokens=500)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
#main_placeholder.text("Data Loading...Started...β
β
β
")
|
39 |
-
#data = loader.load()
|
40 |
-
def fetch_web_content(url):
|
41 |
-
try:
|
42 |
response = requests.get(url, timeout=10)
|
43 |
response.raise_for_status()
|
44 |
soup = BeautifulSoup(response.text, "html.parser")
|
45 |
return soup.get_text()
|
46 |
-
|
47 |
return f"Error fetching {url}: {str(e)}"
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
main_placeholder.text("Data Loading...Completed...β
β
β
")
|
60 |
-
# split data
|
61 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
62 |
separators=['\n\n', '\n', '.', ','],
|
63 |
chunk_size=1000
|
64 |
-
|
65 |
-
main_placeholder.text("Text
|
66 |
docs = text_splitter.split_documents(data)
|
67 |
-
|
|
|
68 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
69 |
-
#vectorstore_huggingface = FAISS.from_documents(docs, embedding_model)
|
70 |
vectorstore_huggingface = Chroma.from_documents(docs, embedding_model)
|
71 |
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
72 |
time.sleep(2)
|
73 |
-
|
74 |
-
# Save the
|
75 |
with open(file_path, "wb") as f:
|
76 |
pickle.dump(vectorstore_huggingface, f)
|
77 |
|
78 |
-
|
|
|
79 |
if query:
|
80 |
if os.path.exists(file_path):
|
81 |
with open(file_path, "rb") as f:
|
82 |
vectorstore = pickle.load(f)
|
83 |
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
|
84 |
result = chain({"question": query}, return_only_outputs=True)
|
85 |
-
|
|
|
86 |
st.header("Answer")
|
87 |
st.write(result["answer"])
|
88 |
-
|
89 |
# Display sources, if available
|
90 |
sources = result.get("sources", "")
|
91 |
if sources:
|
92 |
st.subheader("Sources:")
|
93 |
-
sources_list = sources.split("\n")
|
94 |
for source in sources_list:
|
95 |
st.write(source)
|
96 |
|
|
|
2 |
import streamlit as st
|
3 |
import pickle
|
4 |
import time
|
5 |
+
import requests
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
8 |
from langchain.chains import RetrievalQAWithSourcesChain
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
|
10 |
from langchain.vectorstores import Chroma
|
11 |
+
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
12 |
from dotenv import load_dotenv
|
13 |
+
|
14 |
+
load_dotenv() # Load environment variables from .env file
|
15 |
|
16 |
st.title("RockyBot: News Research Tool π")
|
17 |
st.sidebar.title("News Article URLs")
|
18 |
|
19 |
+
# Collect URLs from user input
|
20 |
+
urls = [st.sidebar.text_input(f"URL {i+1}") for i in range(3)]
|
|
|
|
|
|
|
21 |
process_url_clicked = st.sidebar.button("Process URLs")
|
22 |
file_path = "faiss_store_openai.pkl"
|
23 |
|
24 |
main_placeholder = st.empty()
|
25 |
llm = ChatGroq(model_name="llama-3.3-70b-versatile", temperature=0.9, max_tokens=500)
|
26 |
|
27 |
+
def fetch_web_content(url):
|
28 |
+
"""Fetches text content from a given URL using BeautifulSoup."""
|
29 |
+
try:
|
|
|
|
|
|
|
|
|
30 |
response = requests.get(url, timeout=10)
|
31 |
response.raise_for_status()
|
32 |
soup = BeautifulSoup(response.text, "html.parser")
|
33 |
return soup.get_text()
|
34 |
+
except Exception as e:
|
35 |
return f"Error fetching {url}: {str(e)}"
|
36 |
|
37 |
+
if process_url_clicked:
|
38 |
+
main_placeholder.text("Data Loading...Started...β
β
β
")
|
39 |
+
|
40 |
+
# Fetch content from URLs
|
41 |
+
data = [fetch_web_content(url) for url in urls if url.strip()]
|
42 |
+
|
43 |
+
main_placeholder.text("Data Loading...Completed...β
β
β
")
|
44 |
+
|
45 |
+
# Split data into chunks
|
46 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
|
|
|
47 |
separators=['\n\n', '\n', '.', ','],
|
48 |
chunk_size=1000
|
49 |
+
)
|
50 |
+
main_placeholder.text("Text Splitting...Started...β
β
β
")
|
51 |
docs = text_splitter.split_documents(data)
|
52 |
+
|
53 |
+
# Create embeddings and save to Chroma vector store
|
54 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
55 |
vectorstore_huggingface = Chroma.from_documents(docs, embedding_model)
|
56 |
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
57 |
time.sleep(2)
|
58 |
+
|
59 |
+
# Save the vector store to a pickle file
|
60 |
with open(file_path, "wb") as f:
|
61 |
pickle.dump(vectorstore_huggingface, f)
|
62 |
|
63 |
+
# User query input
|
64 |
+
query = st.text_input("Question: ")
|
65 |
if query:
|
66 |
if os.path.exists(file_path):
|
67 |
with open(file_path, "rb") as f:
|
68 |
vectorstore = pickle.load(f)
|
69 |
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
|
70 |
result = chain({"question": query}, return_only_outputs=True)
|
71 |
+
|
72 |
+
# Display answer
|
73 |
st.header("Answer")
|
74 |
st.write(result["answer"])
|
75 |
+
|
76 |
# Display sources, if available
|
77 |
sources = result.get("sources", "")
|
78 |
if sources:
|
79 |
st.subheader("Sources:")
|
80 |
+
sources_list = sources.split("\n")
|
81 |
for source in sources_list:
|
82 |
st.write(source)
|
83 |
|