Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForImageClassification, AutoProcessor | |
import torch | |
# Load the model and processor | |
model_name = "DeathDaDev/Materializer" | |
processor = AutoProcessor.from_pretrained(model_name) | |
model = AutoModelForImageClassification.from_pretrained(model_name) | |
# Define the prediction function | |
def classify_image(image): | |
# Preprocess the image | |
inputs = processor(images=image, return_tensors="pt") | |
# Perform inference | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
# Get the predicted class | |
predicted_class_idx = logits.argmax(-1).item() | |
return model.config.id2label[predicted_class_idx] | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=3), | |
title="Image Classification with Materializer", | |
description="This model has been trained on texture images that are commonly used for 3d models in an attempt to create an AI model that understands what image 'material' should be used on a specific object. Upload an image to classify it using the Materializer model." | |
) | |
# Launch the interface | |
iface.launch() | |