import gradio as gr from transformers import AutoModelForImageClassification, AutoProcessor import torch # Load the model and processor model_name = "DeathDaDev/Materializer" processor = AutoProcessor.from_pretrained(model_name) model = AutoModelForImageClassification.from_pretrained(model_name) # Define the prediction function def classify_image(image): # Preprocess the image inputs = processor(images=image, return_tensors="pt") # Perform inference with torch.no_grad(): logits = model(**inputs).logits # Get the predicted class predicted_class_idx = logits.argmax(-1).item() return model.config.id2label[predicted_class_idx] # Create the Gradio interface iface = gr.Interface( fn=classify_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Label(num_top_classes=3), title="Image Classification with Materializer", description="Upload an image to classify it using the Materializer model." ) # Launch the interface iface.launch()