Debmalya commited on
Commit
56834d1
·
1 Parent(s): 3e8380c
Files changed (1) hide show
  1. app.py +14 -0
app.py CHANGED
@@ -1,5 +1,19 @@
1
  import gradio as gr
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  model = gr.inputs.Dropdown(list(compare_model_results['Model']),label="Model")
4
  gender = gr.inputs.Dropdown(choices=["Male", "Female"],label = 'gender')
5
  age = gr.inputs.Slider(minimum=1, maximum=100, default=data['age'].mean(), label = 'age')
 
1
  import gradio as gr
2
 
3
+ best = compare_models(sort = 'AUC', n_select = 15)
4
+ compare_model_results = pull()
5
+
6
+ def predict(model, gender, age, hypertension, heart_disease, ever_married, work_type, Residence_type, avg_glucose_level, bmi, smoking_status):
7
+
8
+ df = pd.DataFrame.from_dict({'gender': [gender], 'age': [age], 'hypertension': [hypertension], 'heart_disease':[heart_disease], 'ever_married':[ever_married],
9
+ 'work_type': [work_type], 'Residence_type': [Residence_type], 'avg_glucose_level': [avg_glucose_level], 'bmi':[bmi],'smoking_status':[smoking_status]})
10
+ model_index = list(compare_model_results['Model']).index(model)
11
+ model = best[model_index]
12
+ pred = predict_model(model, df, raw_score=True)
13
+ return {'Yes': pred['Score_Yes'][0].astype('float64'),
14
+ 'No': pred['Score_No'][0].astype('float64' )}
15
+
16
+
17
  model = gr.inputs.Dropdown(list(compare_model_results['Model']),label="Model")
18
  gender = gr.inputs.Dropdown(choices=["Male", "Female"],label = 'gender')
19
  age = gr.inputs.Slider(minimum=1, maximum=100, default=data['age'].mean(), label = 'age')