Debmalya commited on
Commit
7fcf9cc
·
1 Parent(s): e4abad0
Files changed (1) hide show
  1. app.py +6 -0
app.py CHANGED
@@ -2,8 +2,14 @@ import gradio as gr
2
  import pycaret
3
  from pycaret.classification import *
4
  import pandas as pd
 
5
  healthcare_stroke_data = pd.read_csv("healthcare-dataset-stroke-data.csv")
6
 
 
 
 
 
 
7
  modelvalue= setup(data = healthcare_stroke_data, target = 'stroke', normalize = True, normalize_method = 'zscore', transformation=True, fix_imbalance = True, session_id=123, fold = 60, remove_outliers= True, outliers_threshold = 0.05, remove_multicollinearity=True, multicollinearity_threshold = 0.9)
8
 
9
  best = compare_models(sort = 'AUC', n_select = 15)
 
2
  import pycaret
3
  from pycaret.classification import *
4
  import pandas as pd
5
+ import category_encoders as ce
6
  healthcare_stroke_data = pd.read_csv("healthcare-dataset-stroke-data.csv")
7
 
8
+ encoder= ce.OrdinalEncoder(cols=['gender'],return_df=True, mapping=[{'col':'gender', 'mapping':{0: 1, 1: 2,'Other': 3}}])
9
+ healthcare_stroke_data['gender'] = encoder.fit_transform(healthcare_stroke_data['gender'])
10
+ encoder= ce.OrdinalEncoder(cols=['work_type'],return_df=True, mapping=[{'col':'work_type', 'mapping':{0: 1, 1: 2, 'children': 3, '2': 4, 'Never_worked': 5}}])
11
+ healthcare_stroke_data['work_type'] = encoder.fit_transform(healthcare_stroke_data['work_type'])
12
+
13
  modelvalue= setup(data = healthcare_stroke_data, target = 'stroke', normalize = True, normalize_method = 'zscore', transformation=True, fix_imbalance = True, session_id=123, fold = 60, remove_outliers= True, outliers_threshold = 0.05, remove_multicollinearity=True, multicollinearity_threshold = 0.9)
14
 
15
  best = compare_models(sort = 'AUC', n_select = 15)