Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,877 Bytes
3ab16a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from PIL import Image
import torch
import torch.nn.functional as F
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers.models.clip.modeling_clip import _make_causal_mask, _expand_mask
from torch import autograd
import accelerate
import torch.nn as nn
from PIL import Image
import numpy as np
def set_requires_grad(nets, requires_grad=False):
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
Parameters:
nets (network list) -- a list of networks
requires_grad (bool) -- whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def discriminator_r1_loss_accelerator(accelerator, real_pred, real_w):
grad_real, = accelerate.gradient(
outputs=real_pred.sum(), inputs=real_w, create_graph=True #, only_inputs=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
class GANLoss(nn.Module):
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0):
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
if use_lsgan:
self.loss = nn.MSELoss()
else:
self.loss = nn.BCEWithLogitsLoss()
def get_target_tensor(self, input, target_is_real):
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
return target_tensor.expand_as(input)
def __call__(self, input, target_is_real):
target_tensor = self.get_target_tensor(input, target_is_real)
return self.loss(input, target_tensor)
def discriminator_r1_loss(real_pred, real_w):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_w, create_graph=True #, only_inputs=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def add_noise_return_paras(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples, sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def text_encoder_forward(
text_encoder = None,
input_ids = None,
name_batch = None,
attention_mask = None,
position_ids = None,
output_attentions = None,
output_hidden_states = None,
return_dict = None,
embedding_manager = None,
only_embedding=False,
random_embeddings = None,
timesteps = None,
):
output_attentions = output_attentions if output_attentions is not None else text_encoder.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else text_encoder.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else text_encoder.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify either input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states, other_return_dict = text_encoder.text_model.embeddings(input_ids=input_ids,
position_ids=position_ids,
name_batch = name_batch,
embedding_manager=embedding_manager,
only_embedding=only_embedding,
random_embeddings = random_embeddings,
timesteps = timesteps,
)
if only_embedding:
return hidden_states
causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device)
if attention_mask is not None:
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = text_encoder.text_model.final_layer_norm(last_hidden_state)
if text_encoder.text_model.eos_token_id == 2:
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
]
else:
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == text_encoder.text_model.eos_token_id)
.int()
.argmax(dim=-1),
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)[0], other_return_dict
def downsampling(img: torch.tensor, w: int, h: int) -> torch.tensor:
return F.interpolate(
img.unsqueeze(0).unsqueeze(1),
size=(w, h),
mode="bilinear",
align_corners=True,
).squeeze()
def image_grid(images, rows=2, cols=2):
w, h = images[0].size
grid = Image.new('RGB', size=(cols * w, rows * h))
for i, img in enumerate(images):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def latents_to_images(vae, latents, scale_factor=0.18215):
"""
Decode latents to PIL images.
"""
scaled_latents = 1.0 / scale_factor * latents.clone()
images = vae.decode(scaled_latents).sample
images = (images / 2 + 0.5).clamp(0, 1)
images = images.detach().cpu().permute(0, 2, 3, 1).numpy()
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def merge_and_save_images(output_images):
image_size = output_images[0].size
merged_width = len(output_images) * image_size[0]
merged_height = image_size[1]
merged_image = Image.new('RGB', (merged_width, merged_height), (255, 255, 255))
for i, image in enumerate(output_images):
merged_image.paste(image, (i * image_size[0], 0))
return merged_image
class GANLoss(nn.Module):
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0):
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
if use_lsgan:
self.loss = nn.MSELoss()
else:
self.loss = nn.BCELoss()
def get_target_tensor(self, input, target_is_real):
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
return target_tensor.expand_as(input)
def __call__(self, input, target_is_real):
target_tensor = self.get_target_tensor(input, target_is_real)
return self.loss(input, target_tensor) |