Spaces:
Running
Running
File size: 6,813 Bytes
44d88a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import json
import os
import re
import numpy as np
import onnxruntime
from nltk.tokenize import TweetTokenizer
from sacremoses import MosesDetokenizer
from .syllable_splitter import SyllableSplitter
ABJAD_MAPPING = {
"a": "a",
"b": "bé",
"c": "cé",
"d": "dé",
"e": "é",
"f": "èf",
"g": "gé",
"h": "ha",
"i": "i",
"j": "jé",
"k": "ka",
"l": "èl",
"m": "èm",
"n": "èn",
"o": "o",
"p": "pé",
"q": "ki",
"r": "èr",
"s": "ès",
"t": "té",
"u": "u",
"v": "vé",
"w": "wé",
"x": "èks",
"y": "yé",
"z": "zèt",
}
PHONETIC_MAPPING = {
"sy": "ʃ",
"ny": "ɲ",
"ng": "ŋ",
"dj": "dʒ",
"'": "ʔ",
"c": "tʃ",
"é": "e",
"è": "ɛ",
"ê": "ə",
"g": "ɡ",
"I": "ɪ",
"j": "dʒ",
"ô": "ɔ",
"q": "k",
"U": "ʊ",
"v": "f",
"x": "ks",
"y": "j",
}
dirname = os.path.dirname(__file__)
# Predict pronounciation with BERT Masking
# Read more: https://w11wo.github.io/posts/2022/04/predicting-phonemes-with-bert/
class Predictor:
def __init__(self, model_path):
# fmt: off
self.vocab = ['', '[UNK]', 'a', 'n', 'ê', 'e', 'i', 'r', 'k', 's', 't', 'g', 'm', 'u', 'l', 'p', 'o', 'd', 'b', 'h', 'c', 'j', 'y', 'f', 'w', 'v', 'z', 'x', 'q', '[mask]']
self.mask_token_id = self.vocab.index("[mask]")
# fmt: on
self.session = onnxruntime.InferenceSession(model_path)
def predict(self, word: str) -> str:
"""
Predict the phonetic representation of a word.
Args:
word (str): The word to predict.
Returns:
str: The predicted phonetic representation of the word.
"""
text = [self.vocab.index(c) if c != "e" else self.mask_token_id for c in word]
text.extend([0] * (32 - len(text))) # Pad to 32 tokens
inputs = np.array([text], dtype=np.int64)
(predictions,) = self.session.run(None, {"input_4": inputs})
# find masked idx token
_, masked_index = np.where(inputs == self.mask_token_id)
# get prediction at those masked index only
mask_prediction = predictions[0][masked_index]
predicted_ids = np.argmax(mask_prediction, axis=1)
# replace mask with predicted token
for i, idx in enumerate(masked_index):
text[idx] = predicted_ids[i]
return "".join([self.vocab[i] for i in text if i != 0])
class G2P:
def __init__(self):
self.tokenizer = TweetTokenizer()
self.detokenizer = MosesDetokenizer(lang="id")
dict_path = os.path.join(dirname, "data/dict.json")
with open(dict_path) as f:
self.dict = json.load(f)
model_path = os.path.join(dirname, "model/bert_pron.onnx")
self.predictor = Predictor(model_path)
self.syllable_splitter = SyllableSplitter()
def __call__(self, text: str) -> str:
"""
Convert text to phonetic representation.
Args:
text (str): The text to convert.
Returns:
str: The phonetic representation of the text.
"""
text = text.lower()
text = re.sub(r"[^ a-z0-9'\.,?!-]", "", text)
text = text.replace("-", " ")
prons = []
words = self.tokenizer.tokenize(text)
for word in words:
# PUEBI pronunciation
if word in self.dict:
pron = self.dict[word]
elif len(word) == 1 and word in ABJAD_MAPPING:
pron = ABJAD_MAPPING[word]
elif "e" not in word or not word.isalpha():
pron = word
elif "e" in word:
pron = self.predictor.predict(word)
# Replace alofon /e/ with e (temporary)
pron = pron.replace("é", "e")
pron = pron.replace("è", "e")
# Replace /x/ with /s/
if pron.startswith("x"):
pron = "s" + pron[1:]
sylls = self.syllable_splitter.split_syllables(pron)
# Decide where to put the stress
stress_loc = len(sylls) - 1
if len(sylls) > 1 and "ê" in sylls[-2]:
if "ê" in sylls[-1]:
stress_loc = len(sylls) - 2
else:
stress_loc = len(sylls)
# Apply rules on syllable basis
# All alophone are set to tense by default
# and will be changed to lax if needed
alophone = {"e": "é", "o": "o"}
alophone_map = {"i": "I", "u": "U", "e": "è", "o": "ô"}
for i, syll in enumerate(sylls, start=1):
# Put Syllable stress
if i == stress_loc:
syll = "ˈ" + syll
# Alophone syllable rules
for v in ["e", "o"]:
# Replace with lax allphone [ɛ, ɔ] if
# in closed final syllables
if v in syll and not syll.endswith(v) and i == len(sylls):
alophone[v] = alophone_map[v]
# Alophone syllable stress rules
for v in ["i", "u"]:
# Replace with lax allphone [ɪ, ʊ] if
# in the middle of syllable without stress
# and not ends with coda nasal [m, n, ng] (except for final syllable)
if (
v in syll
and not syll.startswith("ˈ")
and not syll.endswith(v)
and (
not any(syll.endswith(x) for x in ["m", "n", "ng"])
or i == len(sylls)
)
):
syll = syll.replace(v, alophone_map[v])
if syll.endswith("nk"):
syll = syll[:-2] + "ng"
elif syll.endswith("d"):
syll = syll[:-1] + "t"
elif syll.endswith("b"):
syll = syll[:-1] + "p"
elif syll.endswith("k") or (
syll.endswith("g") and not syll.endswith("ng")
):
syll = syll[:-1] + "'"
sylls[i - 1] = syll
pron = "".join(sylls)
# Apply phonetic and alophone mapping
for v in alophone:
if v == "o" and pron.count("o") == 1:
continue
pron = pron.replace(v, alophone[v])
for g, p in PHONETIC_MAPPING.items():
pron = pron.replace(g, p)
pron = pron.replace("kh", "x")
prons.append(pron)
prons.append(" ")
return self.detokenizer.detokenize(prons)
|