File size: 6,813 Bytes
44d88a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import json
import os
import re

import numpy as np
import onnxruntime
from nltk.tokenize import TweetTokenizer
from sacremoses import MosesDetokenizer

from .syllable_splitter import SyllableSplitter

ABJAD_MAPPING = {
    "a": "a",
    "b": "bé",
    "c": "cé",
    "d": "dé",
    "e": "é",
    "f": "èf",
    "g": "gé",
    "h": "ha",
    "i": "i",
    "j": "jé",
    "k": "ka",
    "l": "èl",
    "m": "èm",
    "n": "èn",
    "o": "o",
    "p": "pé",
    "q": "ki",
    "r": "èr",
    "s": "ès",
    "t": "té",
    "u": "u",
    "v": "vé",
    "w": "wé",
    "x": "èks",
    "y": "yé",
    "z": "zèt",
}

PHONETIC_MAPPING = {
    "sy": "ʃ",
    "ny": "ɲ",
    "ng": "ŋ",
    "dj": "dʒ",
    "'": "ʔ",
    "c": "tʃ",
    "é": "e",
    "è": "ɛ",
    "ê": "ə",
    "g": "ɡ",
    "I": "ɪ",
    "j": "dʒ",
    "ô": "ɔ",
    "q": "k",
    "U": "ʊ",
    "v": "f",
    "x": "ks",
    "y": "j",
}


dirname = os.path.dirname(__file__)

# Predict pronounciation with BERT Masking
# Read more: https://w11wo.github.io/posts/2022/04/predicting-phonemes-with-bert/
class Predictor:
    def __init__(self, model_path):
        # fmt: off
        self.vocab = ['', '[UNK]', 'a', 'n', 'ê', 'e', 'i', 'r', 'k', 's', 't', 'g', 'm', 'u', 'l', 'p', 'o', 'd', 'b', 'h', 'c', 'j', 'y', 'f', 'w', 'v', 'z', 'x', 'q', '[mask]']
        self.mask_token_id = self.vocab.index("[mask]")
        # fmt: on
        self.session = onnxruntime.InferenceSession(model_path)

    def predict(self, word: str) -> str:
        """
        Predict the phonetic representation of a word.

        Args:
            word (str): The word to predict.

        Returns:
            str: The predicted phonetic representation of the word.
        """
        text = [self.vocab.index(c) if c != "e" else self.mask_token_id for c in word]
        text.extend([0] * (32 - len(text)))  # Pad to 32 tokens
        inputs = np.array([text], dtype=np.int64)
        (predictions,) = self.session.run(None, {"input_4": inputs})

        # find masked idx token
        _, masked_index = np.where(inputs == self.mask_token_id)

        # get prediction at those masked index only
        mask_prediction = predictions[0][masked_index]
        predicted_ids = np.argmax(mask_prediction, axis=1)

        # replace mask with predicted token
        for i, idx in enumerate(masked_index):
            text[idx] = predicted_ids[i]

        return "".join([self.vocab[i] for i in text if i != 0])


class G2P:
    def __init__(self):
        self.tokenizer = TweetTokenizer()
        self.detokenizer = MosesDetokenizer(lang="id")

        dict_path = os.path.join(dirname, "data/dict.json")
        with open(dict_path) as f:
            self.dict = json.load(f)

        model_path = os.path.join(dirname, "model/bert_pron.onnx")
        self.predictor = Predictor(model_path)

        self.syllable_splitter = SyllableSplitter()

    def __call__(self, text: str) -> str:
        """
        Convert text to phonetic representation.

        Args:
            text (str): The text to convert.

        Returns:
            str: The phonetic representation of the text.
        """
        text = text.lower()
        text = re.sub(r"[^ a-z0-9'\.,?!-]", "", text)
        text = text.replace("-", " ")

        prons = []
        words = self.tokenizer.tokenize(text)
        for word in words:
            # PUEBI pronunciation
            if word in self.dict:
                pron = self.dict[word]
            elif len(word) == 1 and word in ABJAD_MAPPING:
                pron = ABJAD_MAPPING[word]
            elif "e" not in word or not word.isalpha():
                pron = word
            elif "e" in word:
                pron = self.predictor.predict(word)

            # Replace alofon /e/ with e (temporary)
            pron = pron.replace("é", "e")
            pron = pron.replace("è", "e")

            # Replace /x/ with /s/
            if pron.startswith("x"):
                pron = "s" + pron[1:]

            sylls = self.syllable_splitter.split_syllables(pron)
            # Decide where to put the stress
            stress_loc = len(sylls) - 1
            if len(sylls) > 1 and "ê" in sylls[-2]:
                if "ê" in sylls[-1]:
                    stress_loc = len(sylls) - 2
                else:
                    stress_loc = len(sylls)

            # Apply rules on syllable basis
            # All alophone are set to tense by default
            # and will be changed to lax if needed
            alophone = {"e": "é", "o": "o"}
            alophone_map = {"i": "I", "u": "U", "e": "è", "o": "ô"}
            for i, syll in enumerate(sylls, start=1):
                # Put Syllable stress
                if i == stress_loc:
                    syll = "ˈ" + syll

                # Alophone syllable rules
                for v in ["e", "o"]:
                    # Replace with lax allphone [ɛ, ɔ] if
                    # in closed final syllables
                    if v in syll and not syll.endswith(v) and i == len(sylls):
                        alophone[v] = alophone_map[v]

                # Alophone syllable stress rules
                for v in ["i", "u"]:
                    # Replace with lax allphone [ɪ, ʊ] if
                    # in the middle of syllable without stress
                    # and not ends with coda nasal [m, n, ng] (except for final syllable)
                    if (
                        v in syll
                        and not syll.startswith("ˈ")
                        and not syll.endswith(v)
                        and (
                            not any(syll.endswith(x) for x in ["m", "n", "ng"])
                            or i == len(sylls)
                        )
                    ):
                        syll = syll.replace(v, alophone_map[v])

                if syll.endswith("nk"):
                    syll = syll[:-2] + "ng"
                elif syll.endswith("d"):
                    syll = syll[:-1] + "t"
                elif syll.endswith("b"):
                    syll = syll[:-1] + "p"
                elif syll.endswith("k") or (
                    syll.endswith("g") and not syll.endswith("ng")
                ):
                    syll = syll[:-1] + "'"
                sylls[i - 1] = syll

            pron = "".join(sylls)
            # Apply phonetic and alophone mapping
            for v in alophone:
                if v == "o" and pron.count("o") == 1:
                    continue
                pron = pron.replace(v, alophone[v])
            for g, p in PHONETIC_MAPPING.items():
                pron = pron.replace(g, p)
            pron = pron.replace("kh", "x")

            prons.append(pron)
            prons.append(" ")

        return self.detokenizer.detokenize(prons)