Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Dockerfile +13 -0
- app.py +103 -0
- requirements.txt +8 -0
Dockerfile
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
COPY requirements.txt .
|
| 6 |
+
|
| 7 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 8 |
+
|
| 9 |
+
COPY . .
|
| 10 |
+
|
| 11 |
+
EXPOSE 7860
|
| 12 |
+
|
| 13 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from loguru import logger
|
| 3 |
+
from pydantic import BaseModel, Field
|
| 4 |
+
from fastapi import FastAPI, HTTPException
|
| 5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
+
from sentence_transformers import CrossEncoder
|
| 7 |
+
from typing import List, Optional
|
| 8 |
+
|
| 9 |
+
# Initialize FastAPI app with documentation metadata
|
| 10 |
+
app = FastAPI(
|
| 11 |
+
title="Document Reranker API",
|
| 12 |
+
description="An API for reranking documents using a CrossEncoder model.",
|
| 13 |
+
version="1.0",
|
| 14 |
+
docs_url="/docs", # Swagger UI
|
| 15 |
+
redoc_url="/redoc", # ReDoc UI
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Enable CORS (optional but useful for frontend integration)
|
| 19 |
+
app.add_middleware(
|
| 20 |
+
CORSMiddleware,
|
| 21 |
+
allow_origins=["*"], # Allow all origins (modify as needed)
|
| 22 |
+
allow_credentials=True,
|
| 23 |
+
allow_methods=["*"],
|
| 24 |
+
allow_headers=["*"],
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Device selection
|
| 28 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
+
logger.warning(
|
| 30 |
+
f"Using device: {DEVICE} ({'GPU: ' + torch.cuda.get_device_name(0) if DEVICE.type == 'cuda' else 'Running on CPU'})"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Load the model at startup to avoid reloading for each request
|
| 34 |
+
model = CrossEncoder(
|
| 35 |
+
"jinaai/jina-reranker-v1-turbo-en",
|
| 36 |
+
trust_remote_code=True,
|
| 37 |
+
device=DEVICE,
|
| 38 |
+
cache_dir="models",
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class RerankerRequest(BaseModel):
|
| 43 |
+
query: str = Field(..., description="The search query string")
|
| 44 |
+
documents: List[str] = Field(..., description="List of documents to rerank")
|
| 45 |
+
return_documents: bool = Field(
|
| 46 |
+
True, description="Whether to return document content in results"
|
| 47 |
+
)
|
| 48 |
+
top_k: int = Field(3, description="Number of top results to return")
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class RankedResult(BaseModel):
|
| 52 |
+
score: float
|
| 53 |
+
index: int
|
| 54 |
+
document: Optional[str] = None
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class RerankerResponse(BaseModel):
|
| 58 |
+
results: List[RankedResult]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
@app.post("/rerank", response_model=RerankerResponse, tags=["Reranker"])
|
| 62 |
+
async def rerank_documents(request: RerankerRequest):
|
| 63 |
+
"""
|
| 64 |
+
Reranks the given list of documents based on their relevance to the query.
|
| 65 |
+
|
| 66 |
+
- **query**: The input query string.
|
| 67 |
+
- **documents**: A list of documents to be reranked.
|
| 68 |
+
- **return_documents**: Whether to include document content in results.
|
| 69 |
+
- **top_k**: Number of top-ranked documents to return.
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
- A list of ranked documents with scores and indexes.
|
| 73 |
+
"""
|
| 74 |
+
try:
|
| 75 |
+
# Call the model's rank method with the provided parameters
|
| 76 |
+
results = model.rank(
|
| 77 |
+
request.query,
|
| 78 |
+
request.documents,
|
| 79 |
+
return_documents=request.return_documents,
|
| 80 |
+
top_k=request.top_k,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Format the results based on the model's output
|
| 84 |
+
formatted_results = [
|
| 85 |
+
RankedResult(
|
| 86 |
+
score=result["score"],
|
| 87 |
+
index=result["corpus_id"],
|
| 88 |
+
document=result["text"] if request.return_documents else None,
|
| 89 |
+
)
|
| 90 |
+
for result in results
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
return RerankerResponse(results=formatted_results)
|
| 94 |
+
|
| 95 |
+
except Exception as e:
|
| 96 |
+
raise HTTPException(status_code=500, detail=f"Error in reranking: {str(e)}")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# Run the FastAPI app with Uvicorn
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
import uvicorn
|
| 102 |
+
|
| 103 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
torchaudio
|
| 4 |
+
loguru
|
| 5 |
+
fastapi
|
| 6 |
+
uvicorn
|
| 7 |
+
pydantic
|
| 8 |
+
sentence-transformers
|