DeepDiveDev commited on
Commit
5201be4
·
verified ·
1 Parent(s): 6162880

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -0
app.py CHANGED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
3
+
4
+ import torch
5
+ from flask import Flask, request, jsonify
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer
7
+
8
+ # Initialize the Flask app
9
+ app = Flask(__name__)
10
+
11
+ # Load the Hugging Face model and tokenizer for the Llama model
12
+ model_name = "mattshumer/Reflection-Llama-3.1-70B"
13
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
14
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
15
+
16
+ # Sample responses based on sentiment (dummy example, can enhance based on model usage)
17
+ responses = {
18
+ "positive": "I'm glad you're feeling positive! Keep up the great mood!",
19
+ "neutral": "It seems you're feeling neutral. I'm here if you want to talk!",
20
+ "negative": "I'm sorry you're feeling this way. Here's a helpline for support: 1-800-123-4567."
21
+ }
22
+
23
+ def analyze_sentiment(text):
24
+ """Function to analyze the sentiment of the user input."""
25
+ inputs = tokenizer(text, return_tensors="pt").to("cuda")
26
+ outputs = model.generate(inputs["input_ids"], max_length=100)
27
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
28
+
29
+ # Based on generated text, let's assume it has sentiment analysis capabilities or text summarization
30
+ if "happy" in generated_text.lower() or "good" in generated_text.lower():
31
+ return "positive"
32
+ elif "sad" in generated_text.lower() or "bad" in generated_text.lower():
33
+ return "negative"
34
+ else:
35
+ return "neutral"
36
+
37
+ @app.route('/chatbot', methods=['POST'])
38
+ def chatbot():
39
+ """Handle user input and provide appropriate responses."""
40
+ user_input = request.json['input']
41
+ sentiment = analyze_sentiment(user_input)
42
+ response = responses[sentiment]
43
+ return jsonify({"response": response, "sentiment": sentiment})
44
+
45
+ if __name__ == '__main__':
46
+ app.run(debug=True)