Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from flask import Flask, request, jsonify
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
|
8 |
+
# Initialize the Flask app
|
9 |
+
app = Flask(__name__)
|
10 |
+
|
11 |
+
# Load the Hugging Face model and tokenizer for the Llama model
|
12 |
+
model_name = "mattshumer/Reflection-Llama-3.1-70B"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
15 |
+
|
16 |
+
# Sample responses based on sentiment (dummy example, can enhance based on model usage)
|
17 |
+
responses = {
|
18 |
+
"positive": "I'm glad you're feeling positive! Keep up the great mood!",
|
19 |
+
"neutral": "It seems you're feeling neutral. I'm here if you want to talk!",
|
20 |
+
"negative": "I'm sorry you're feeling this way. Here's a helpline for support: 1-800-123-4567."
|
21 |
+
}
|
22 |
+
|
23 |
+
def analyze_sentiment(text):
|
24 |
+
"""Function to analyze the sentiment of the user input."""
|
25 |
+
inputs = tokenizer(text, return_tensors="pt").to("cuda")
|
26 |
+
outputs = model.generate(inputs["input_ids"], max_length=100)
|
27 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
# Based on generated text, let's assume it has sentiment analysis capabilities or text summarization
|
30 |
+
if "happy" in generated_text.lower() or "good" in generated_text.lower():
|
31 |
+
return "positive"
|
32 |
+
elif "sad" in generated_text.lower() or "bad" in generated_text.lower():
|
33 |
+
return "negative"
|
34 |
+
else:
|
35 |
+
return "neutral"
|
36 |
+
|
37 |
+
@app.route('/chatbot', methods=['POST'])
|
38 |
+
def chatbot():
|
39 |
+
"""Handle user input and provide appropriate responses."""
|
40 |
+
user_input = request.json['input']
|
41 |
+
sentiment = analyze_sentiment(user_input)
|
42 |
+
response = responses[sentiment]
|
43 |
+
return jsonify({"response": response, "sentiment": sentiment})
|
44 |
+
|
45 |
+
if __name__ == '__main__':
|
46 |
+
app.run(debug=True)
|