Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForVision2Seq | |
# Load the model & processor | |
model_name = "Murasajo/Llama-3.2-VL-Finetuned-on-HandwrittenText" | |
processor = AutoProcessor.from_pretrained(model_name) | |
model = AutoModelForVision2Seq.from_pretrained(model_name) | |
# Function to extract handwritten text | |
def extract_text(image): | |
try: | |
# Convert input to PIL Image | |
if isinstance(image, np.ndarray): | |
if len(image.shape) == 2: # If grayscale (H, W), add channels | |
image = np.stack([image] * 3, axis=-1) | |
image = Image.fromarray(image) | |
else: | |
image = Image.open(image).convert("RGB") | |
# Process image through model | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values) | |
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return extracted_text | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=extract_text, | |
inputs="image", | |
outputs="text", | |
title="Handwritten Text OCR", | |
description="Upload a handwritten document and extract text using AI.", | |
) | |
# Run the app | |
iface.launch() | |